Load Cell and Torque Sensor - X/Y/Z

Configurable up to $3 x$ force $/ 3 x$ torque

MODEL 8565 NEw

Preliminary data sheet

Strain gage output

Robot flange in accordance with DIN ISO 9049-1

Direction of action

Highlights

- 6-axis sensor

■ Measuring range Fx: $1 \mathrm{kN} / \mathrm{Fy}: 1 \mathrm{kN} / \mathrm{Fz}_{\mathrm{z}} 2 \mathrm{kN}$
$\mathrm{Mx}: 50 \mathrm{Nm} / \mathrm{My}: 50 \mathrm{Nm} / \mathrm{Mz}: 50 \mathrm{Nm}$

- Other measuring ranges available on request
- Non-linearity < 0.1 \% F.S.
- Excellent price/performance ratio
- Customer-specific axis configuration

Applications

- Robot-assisted applications
- Pick \& place
- Tactile sensing in manufacturing
- Collision detection
- Force-controlled machining

Product description

In robotics and automation engineering, the requirements for precise, tactile handling are constantly increasing. The robust 8565 multi-axis sensor with its low crosstalk enables you to monitor and evaluate your process at any time, regardless of the sensor's orientation.

With just one sensor, you can obtain accurate three-dimensional load information. Its six independent outputs let you selectively evaluate the direction of action of the loads (axial force [Fz] / lateral forces [Fx/Fy] / torque $[M z]$ / bending moment $[M x / M y]$).

Thanks to its compact design and adaptation via the standardized robot flange in accordance with DIN ISO 9049-1, the sensor can be integrated into many applications quickly and easily.

When the slightest deviations are detected in your fast-moving and complex production processes, you can intervene immediately to make adjustments. This helps to prevent faulty parts and reduce manufacturing costs.

Technical data

8565	-	60025050
Measuring range Fx calibrated in N from O		$\mathrm{Fx}_{\mathrm{x}}=0 \ldots \pm 1 \mathrm{kN}(0 \ldots \pm 224.8 \mathrm{lbs})$
Measuring range Fy calibrated in N from O .		Fy $=0 \ldots \pm 1 \mathrm{kN}(0 \ldots \pm 224.8 \mathrm{lbs})$
Measuring range Fz calibrated in N from O		$\mathrm{Fz}=0 \ldots \pm 2 \mathrm{kN}(0 \ldots \pm 449.6 \mathrm{lbs})$
Measuring range Mx calibrated in Nm from 0 .		$M x=0 \ldots \pm 50 \mathrm{Nm}(0 \ldots \pm 442.51 \mathrm{lbs}$ in)
Measuring range My calibrated in Nm from O		My $=0 \ldots \pm 50 \mathrm{Nm}(0 \ldots \pm 442.51 \mathrm{lbs}$ in)
Measuring range Mz calibrated in Nm from O		$\mathrm{Mz}=0 \ldots \pm 50 \mathrm{Nm}(0 \ldots \pm 442.51 \mathrm{lbs}$ in)
Accuracy		
Relative non-linearity *		$< \pm 0.1$ \% F.S.
Relative hysteresis		0.2 \% F.S.
Characteristic curve deviation*		< ± 0.15 \% F.S.
Crosstalk		$<5 \%$ from Fz to other axes (other crosstalk significantly less)
Temperature effect on zero output		$\leq \pm 0.02$ \% F.S./K
Temperature effect on nominal sensitivity		$\leq \pm 0.02$ \% F.S./K
Electrical values		
Sensitivity (nominal) Fx:		$1.2 \mathrm{mV} / \mathrm{V}$
Sensitivity (nominal) Fy:		$1.2 \mathrm{mV} / \mathrm{V}$
Sensitivity (nominal) Fz:		$0.4 \mathrm{mV} / \mathrm{V}$
Sensitivity (nominal) Mx:		$1 \mathrm{mV} / \mathrm{V}$
Sensitivity (nominal) My:		$1 \mathrm{mV} / \mathrm{V}$
Sensitivity (nominal) Mz:		$0.9 \mathrm{mV} / \mathrm{V}$
Measurement direction		Positive output signal for compressive load / torque in the direction of the marked X, Y or Z axis
Bridge resistance		$350 \Omega / 700 \Omega$ nominal (deviations are possible)
Excitation voltage		5 V DC (max. 10 V DC)
Environmental condifions		
Nominal temperature range		$+15^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Operating temperature range		$-10^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
Mechanical values		
Deflection full scale		Fx and $\mathrm{Fy}<0.04 \mathrm{~mm} / \mathrm{Fz}<0.015 \mathrm{~mm}$
Max. operational force (Dynamic load limit 250)		$L \max =100 * \frac{\sqrt{F x^{2}+F y^{2}}}{F x \text { nom. }}+50 * \frac{\|F z\|}{F z \text { nom. }}+70 * \frac{\sqrt{M x^{2}+M y^{2}}}{M x \text { nom. }}+100 * \frac{\|M z\|}{M z \text { nom. }} \leq 250$ Please note: The sensor's coordinate origin is in the geometric center of the sensor. When calculating the maximum operational force, the additional bending moments due to leverage effects must be taken into account for the acting lateral forces. Example: Force-controlled grinding process with simultaneous dynamic loads of up to: $\begin{gathered} F x=500 \mathrm{~N} / \mathrm{Fy}=500 \mathrm{~N} / \mathrm{Fz}=1.5 \mathrm{kN} / \mathrm{Mx}=20 \mathrm{~N} / \mathrm{My}=20 \mathrm{~N} / \mathrm{Mz}=40 \mathrm{~N} \\ \mathbf{L m a x}=\mathbf{1 0 0} * \frac{\sqrt{\mathbf{5 0 0 N ^ { \mathbf { 2 } } + \mathbf { 5 0 0 \mathbf { N } ^ { 2 } }}} \underset{\mathbf{1 0 0 0}}{ }+\mathbf{5 0} * \frac{\mathbf{1 5 0 0 N}}{\mathbf{2 0 0 0}}+\mathbf{7 0} * \frac{\sqrt{\mathbf{2 0 \mathbf { N m } ^ { 2 } + \mathbf { 2 0 N m }}}}{\mathbf{5 0 N m}}+\mathbf{1 0 0} * \frac{\mathbf{4 0 N m}}{\mathbf{5 0 N m}}=227.80}{} \end{gathered}$
Dynamic performance		recommended: 50 \%
Material		high-strength aluminum
Protection class (EN 60529)		IP40
Other		
Natural frequency		$>1800 \mathrm{~Hz}$
Mass	[g]	800

The data in the area $20 \%-100 \%$

Electrical termination

Output signal

burster load cells are based on a strain-gage Wheatstone bridge. This measurement principle means that the output voltage mV / V is highly dependent on the sensor supply voltage. Our website contains details of suitable instrumentation amplifiers, indicator and display devices and process instruments.

Connector pin assignment			
Measurement channel	Assignment		Pin
Fx	Us+	Excitation (+)	A
	Us-	Excitation (-)	B
	Um+	Measurement signal (+)	C
	Um-	Measurement signal (-)	D
Fy	Us+	Excitation (+)	E
	Us-	Excitation (-)	F
	Um+	Measurement signal (+)	G
	Um-	Measurement signal (-)	H
Fz	Us+	Excitation (+)	J
	Us-	Excitation (-)	K
	Um+	Measurement signal (+)	L
	Um-	Measurement signal $(-)$	M
Mx	Us+	Excitation (+)	N
	Us-	Excitation (-)	P
	Um+	Measurement signal (+)	R
	Um-	Measurement signal $(-)$	S
My	Us+	Excitation (+)	T
	Us-	Excitation (-)	U
	Um+	Measurement signal (+)	V
	Um-	Measurement signal (-)	W
Mz	Us+	Excitation (+)	X
	Us-	Excitation (-)	Y
	Um+	Measurement signal (+)	Z
	Um-	Measurement signal (-)	a
	N.C.		b
	N.C.		c

Electrical connection

Accessories

Connector, cables and devices

Order code

Connector	
9900-V724	Connector socket 26 pin (included with device)
Cables	
99724-000A-0090030	Connecting cable, 3m, 3 x strain gage ($\mathrm{Fx} / \mathrm{Fy} / \mathrm{Fz}$)
99724-000B-0090030	Connecting cable, $3 \mathrm{~m}, 3 \mathrm{x}$ strain gage ($\mathrm{Mx} / \mathrm{My} / \mathrm{Mz}$)
99724-000F-0090030	Connecting cable, $3 \mathrm{~m}, 6 \mathrm{x}$ strain gage
99209-724A-0090030	Connecting cable to USB interface 9206-V3xxxx, 3x force, length 3 m , suitable for drag chains
99209-724B-0090030	Connecting cable to USB interface 9206-V3xxxx, 3x torque, length 3 m , suitable for drag chains
99209-724F-0090030	Connecting cable to USB interface 9206-V3xxxx, 3x force / 3 x torque, length 3 m , suitable for drag chains
Devices	
9250-VXXXXXX	Universal instrumentation amplifier
9251-VXXXX	Fieldbus controller for the 9250 instrumentation amplifier series
9236-V...	In-line instrumentation amplifier for strain gage sensors
9206-V.	USB sensor interface for strain gage sensors

Order Code

Measuring range					Code									Measuring range			
					Fz				Mz					$\begin{aligned} & \mathrm{Fz}=0 \ldots \pm 449.6 \mathrm{lbs} \\ & \mathrm{Fy}=0 \ldots \pm 224.8 \mathrm{lbs} \\ & \mathrm{Fx}=0 \ldots \pm 224.8 \mathrm{lbs} \\ & \mathrm{Mz}=0 \ldots \pm 442.5 \mathrm{lbs} \text { in } \\ & \mathrm{My}=0 \ldots \pm 442.5 \mathrm{lbs} \text { in } \\ & \mathrm{Mx}=0 \ldots \pm 442.5 \mathrm{lbs} \text { in } \end{aligned}$			
	$\begin{aligned} & \mathrm{Fz}= \\ & \mathrm{Fy}= \\ & \mathrm{Fx}= \\ & \mathrm{Mz}= \\ & M y= \\ & M \mathrm{C}= \end{aligned}$	$\begin{array}{rr} & \pm \\ \cdot & \pm \\ . & \pm \\ . & \pm 5 \\ . . & \pm 5 \\ . . & \pm 5 \end{array}$	$\begin{aligned} & \mathrm{kN} \\ & \mathrm{kN} \\ & \mathrm{kN} \\ & \mathrm{~N} \end{aligned}$ Nm Nn		6	0	0	2	5	0	5	0					
8	5	6	5	-									-			0	0
														\vdots			
- Force: Fz / Fy / Fx														0			
- Force: Fz / Fy / Fx														1			
- Force: Fz / Fy / Fx														2			
- Force: Fz / Fy / Fx														3			
- Force: Fz / Fy / Fx														4			
- Force: Fz / Fy / Fx														5			
- Force: Fz / Fy / Fx														6			
■ Force: Fz / Fy / Fx														7			
- Torque: $\mathrm{Az} / \mathrm{My} / \mathrm{Ax}$															0		
- Torque: $\mathrm{Az} / \mathrm{Ay} / \mathrm{Mx}$															1		
Torque: Azz / My / Mx															2		
- Torque: Az / M M / Mx															3		
- Torque: Mz / $\mathrm{Aly}_{\text {/ }}$ / A^{*}															4		
Torque: Mz / Ay / Mx															5		
- Torque: Mz / My / A $\mathbf{A}^{\text {\% }}$															6		
Torque: Mz / My / Mx															7		

Example order

Ordering example		
1 x	Sensor with application 3 x force $/ 3 \mathrm{x}$ torque	Type 8565-6002-5050-7700
1 x	Connecting cable, open cable end, length 3 m , suitable for drag chains	Type 99209-724F-0090030
6 x	Single-channel in-line instrumentation amplifier for strain gage sensors	Type 9236-V000
6 C	Calibrate a measuring chain	92ABG

Note

Brochure

Our brochure "Load cells - for production automation, R\&D and quality assurance" is available for download on our website or can be requested. It contains numerous applications, detailed product specifications and overviews.

Product videos

You can find our installation videos at: www.youtube.com/bursterVideo

- CAD datc

Download via www.burster.de or directly from www.traceparts.de

YouTube

