

Torque Sensor

Rotating, contact ring transfer

Model 86403 with square end Model 86413 with round shaft ends

86403 EN 24 months

- Measuring ranges between 0 ... ±500 Nm and 0 ... 1000 Nm
- Standardized output signal makes exchange easy
- Optionally available with factory calibration certificate
- Designed for clockwise and counterclockwise torque
- Optionally available with integrated angle measurement

Application

Precise, reliable measurements of both static and dynamic torques in either direction can be made with this range of sensors.

This opens a wide range of possible applications to the user. These torque sensors are standard equipment in a wide range of industrial automation, quality control and automotive components industry applications, as well as in laboratories.

Typical applications:

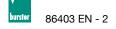
Screwing technology

- Checking and adjusting bolting tools such as torque limiting wrenches, screwdrivers
- Testing bolted connections

Measuring the drag torque of motors and pumps

- Frictional torques of gears, bearings and seals
- Testing torsion springs
- Adjusting equipment in the automobile industry (sunroof, power windows etc.)

Description


Strain gauges are mounted on the torsion shaft of the sensor element, itself made of steel, connected to form a full bridge. The electrical power excitation for the wire strain gauge full bridge and the transmission of the measured signal is provided through a high-quality slip-ring system between the stator and the rotor.

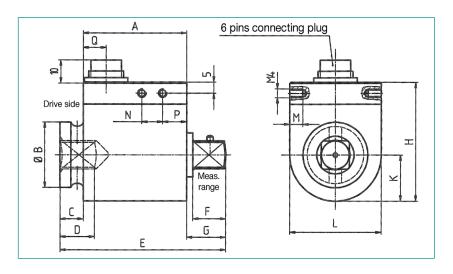
For a clockwise torque, the measurement signal is positive, and it is negative for a counterclockwise torque.

The sensor for the optionally available angle measurement for the square shaft versions is fitted with an additional pulse-generating disk.

With the aid of a second encoder track, displaced by 90°, allows the subsequent evaluation units to perform 4-fold edge evaluation. This allows significantly improved resolution to be achieved. The offset track makes it possible to detect the direction of the rotation.

The characteristic parameters for the sensors are standardized in order to reduce the effort required to check a connected amplifier or to exchange the sensor.

Technical Data

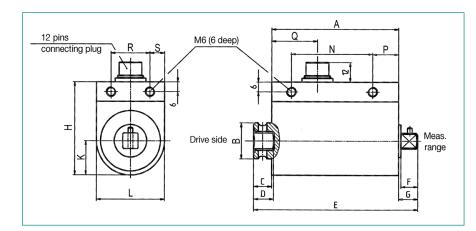

Model 86403

Toque sensor, rotating, standard square ends according to DIN 3121

Order Code	Measurement	Sensi-	Square	Spring	Max.	Torque	Mass	s Dimensions [mm]													
	Range	tivity	Ends	Constant	Lat-	of Inertia															
					eral	Drive End			I	I	1	1					1		1	1	
					Force				_		_	_	_							_	
		[mV/V]		[Nm/rad]	[N]	J in [kg m ²]	[kg]	A	В	С	D	E	F	G	Н	L	K	М	Ν	Ρ	Q
86403-5500	0 ± 500 Nm	2	3/4"	$5.9\cdot10^4$	200	1.1 · 10 ⁻⁴	0.80	55	44	19.1	24.9	100	22.6	25.9	68	60	30	-	-	-	10.5
86403-6001	0 ± 1000 Nm	2	1"	1.1 · 10⁵	240	2.6 · 10 ⁻⁴	1.40	55	54	33.1	29.6	132	27.4	43.9	68	60	30	-	-	-	10.5

Higher ranges on request

Dimensional drawing Model 86403

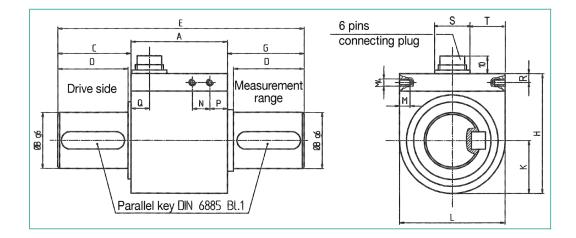

Model 86403-...-V501

Dimensional drawing

Model 86403-...V501

Torque sensor, rotating, standard square ends, with angle measurement

Order Code	Measurement	Sensi-	Square	Spring	Max.	Torque of	Mass						Dim	ensio	ons [i	mm]						
	Range	tivity	Ends	Constant											-								
						Drive End																	
					Force																		
		[mV/V]		[Nm/rad]	[N]	J in [kg m²]	[kg]	Α	В	С	D	Е	F	G	н	L	ĸ	M	N	P	Q	R	S
86403-5500-V501	0 ± 500 Nm	2	3/4"	3.9 ·10⁴	200	9.2 ·10 ⁻⁵	1.3	92	44	18	24.9	135	22.6	25	70	56	28	10 6	6 13	3 4	.3 2	24 1	16
86403-6001-V501	0 ±1000 Nm	2	1"	8.9 ·10⁴	240	3.6 ·10 ⁻⁴	1.5	92	54	53.1	29.9	177	27.3	31.9	70	56	28	10 6	6 13	3 4	.3 2	24 1	16


Technical Data

Model 86413

Torque sensor, rotating, round shaft ends with parallel key

Order Code	Measurement	Sensi-	Spring	Max.	Torque	Mass					Ľ	Dimer	nsior	ns [m	m]					
	Range	tivity	Constant	Lat-	of Inertia									-	-					
				eral	Drive End															
				Force																
		[mV/V]	[Nm/rad]	[N]	J in [kg m²]	[kg]	Α	В	С	D	Е	G	Н	L	Κ	М	Ν	Ρ	Q	R
86413-5500	$0\\ \pm\ 500\ Nm$	2	6.33 ·10⁴	200	9.42 ·10 ⁻⁵	0.90	55	32	41.6	40	140	43.4	68	60	30	-	-	-	10.5	5

Dimensional drawing Models 86413 and 86413-...V501

Model 86413-...V501

Torque sensor, rotating, round shaft with keyways and internal angle measurement

Order Code	Measurement Range		Spring Constant		Torque of Inertia	Mass						Dim	ensic	ons (i	mm]				-				
				eral Force	Drive End																	Ζ	2
		[mV/V]	[Nm/rad]	[N]	J in [kg m ²]	[kg]	А	В	C/G	D	Е	н	L	К	М	Ν	Р	Q	R	s	т		
86413-5500-V501	0 ± 500 Nm	2	5.3 ·10 ⁴	200	1.0 ·10 ⁻⁴	1.3	92	32	44	40	180	70	56	28	10	66	13	43	6	20	18		

The CAD drawing (3D/2D) for this sensor can be imported online

directly into your CAD system.

Download via www.burster.com or directly at www.traceparts.com.

General Technical Data for all Sensors

Electrical values Torque sensor

Bridge resistance (full bridge):	350 Ω
Excitation voltage:	2 12 V DC
Characteristic:	standardized
	2 mV/V
Tolerance of characteristic:	± 0.1 %

Test (option):

If the full bridge is connected to the positive strain gauge excitation voltage, it generates an electrical signal equivalent to 100 % of the nominal signal.

Angle displacement sensor (refer to options)

Excitation voltage:	5 V DC
Angle displacement measurement: 2 TTL outputs with two encoders, angle dis detection of direction.	360 pulses/rotation placement 90° for
Environmental conditions	
Range of operation temperature:	±10 °C + 60 °C
Range of nominal temperature:	± 5 °C + 50 °C
Influence of temperature in range of nominal ter	nperature:
to zero signal	±0.01 % F.S./K
to characteristic	±0.003 % F.S./K
Mechanical values	
Measurement error, consisting of non-linearity	
and hysteresis	≤ ± 0.1 % F.S.
Relative spread in unchanged mounting position	n: $\leq \pm 0.05$ % F.S.
Range of rotation:	
an exceedance of the max. rotary speed, up speed, is possible only for short time	o to 1.5 x max. rotary
max. rotary speed	1000¹/min
Max. operation torque: 120	% of nominal torque
Dynamic torques (peak-peak): max. 70	% of nominal torque
Limit torque (static): 130	% of nominal torque
Breakaway torque (static): 250	% of nominal torque
Angle displacement at nominal torque:	< 0.5 °
Material: high strength heat-treated steel, sim	ilar to 1.2826 or 12738
Protection class: acc. to EN 60529	IP50
Dimensions: refer to table and	dimensional drawing
Maintenance/cleaning (contact ring abrasion, re	ecommended change
of the brushes): after app	prox. 5 x 107 rotations
Mechanical connection:	
model 86403 Internal and external square ac connection to assembling tool	,

model 86413 Version with keyways on both shaft ends acc. to DIN 6885 page 1

Electrical connection:

Sensors without measurement of angle displacement

6 pin plug-in connection Mating connector model 9953 Wiring:

1	excitation	negative	
2	excitation	positive	
3	shield (not conne	ected in the sensor)	
4	output	positive	for clockwise torques
5	output signal	negative	for clockwise torques
6	100 % check		

Sensors with measurement of angle displacement

12 pin plug-in connection Mating connector model 9940 Wiring:

Α	excitation	negative for torque	(0 V DC)
В	excitation	positive for torque	(2 12 V DC)
С	output signal	positive for clockwise tor	que
D	output signal	negative for clockwise tor	que
Е	excitation	negative for angle displ.	. (0 V DC)
F	excitation	positive for angle displ.	(+ 5 V DC)
G	angle output 1	(TTL pulses)	
н	angle output 2	(TTL pulses)	
J	angle output		(0 V DC)
Κ	check, shunt calil	bration (option)	· · · ·
L	NC		
Μ	shield		

Order Information

1.	Torque sensor, rotating, square end	
	measurement range 0 500 Nm	Model 86403-5500
0	Torque concer retating equere and	with many of angle diapl

Torque sensor, rotating, square end, with meas. of angle dis 2. measurement range 0 ... 500 Nm Model 86403-5500-V501

Accessories

for sensors without measurement of angle displacement

IOI Sensors without measurement	or angle displacement
Mating connector 6 pin, in scope of c	delivery Model 9953
Mating connector 6 pin, 90° outlet	Model 9900-V589
Connection cable, one end open, length 3 m	Model 99553-000A-0110030
Connection cable to burster desktop 12 pin panel jack, length 3 m	devices with Model 99141-553A-0150030
Connection cable to 9235 and 9311 length 3 m	Model 99209-553A-0110030
Cable adapter to 9163-V3XXXX length 0.2 m	Model 99209-609A-0090002
for sensors with measurement of a	ingle displacement
Mating connector 12 pin, in scope of	delivery Model 9940
Mating connector 12 pin, 90° outlet	Model 9900-V539
Connection cable, one end open, length 3 m	Model 99540-000K-0270030
Connection cable to model 9307, length 3 m	Model 99163-540C-0270030
longin o m	

Supply units, amplifiers and process control units like modular amplifiers models 9250, 9206, 9163 or 9307

refer to section 9 of the catalog.

Options

Higher measurement ranges on request.

Manufacturers Calibration Certificate (WKS)

Calibration of a torque sensor with or without amplifier / indicator (measurement chain) in clockwise or / and counter clockwise direction in increments of 20 % of the measurement range.

Mounting Instructions

The sensors must be mounted carefully. It is important that the drive and measuring ends are not reversed during assembly. The slipring rotation transmitter is located on the drive side. If fitted incorrectly (measuring side and drive side swapped), its friction, which is unavoidable, will be included in the measurement.

The correct position of the measuring side is indicated on the corresponding dimensional drawing. The measuring shaft should always be cleaned prior to assembly and should be supported during fitting, to ensure that no foreign objects are sticking to it. It is recommended that the sensor is electrically connected and that the output signal is watched at the time of fitting. Vibrations originating in the equipment should be kept away from the sensor. The sensor should only be mounted on the coupling after the parts have been accurately aligned. This should be done without free play or lateral forces. It is recommended that the cable connection points upwards, so that abrasion dust cannot fall onto the brush connections.