

BEDIENUNGSANLEITUNG

Digitalanzeiger Typ 9163

©2011 burster präzisionsmesstechnik gmbh & co kg Alle Rechte vorbehalten

Gültig ab: 02.07.2020

Hersteller:

burster präzisionsmesstechnik gmbh & co kgTalstraße 1 – 5Postfach 143276593 Gernsbach76587 Gernsbach

Tel.: (Fax.: (E-Mail: i

(+49) 07224 / 6450 (+49) 07224 / 64588 info@burster.de www.burster.de

3034-009163DE-5999-071527

Anmerkung:

Alle Angaben in der vorliegenden Dokumentation wurden mit großer Sorgfalt erarbeitet, zusammengestellt und unter Einschaltung wirksamer Kontrollmaßnahmen reproduziert. Irrtümer und technische Änderungen sind vorbehalten. Die vorliegenden Informationen sowie die korrespondierenden technischen Daten können sich ohne vorherige Mitteilung ändern. Kein Teil dieser Dokumentation darf ohne vorherige Genehmigung durch den Hersteller reproduziert werden, oder unter Verwendung elektronischer Systeme verarbeitet oder weiterverarbeitet werden.

Bauelemente, Geräte und Messwertsensoren von burster präzisionsmesstechnik (nachstehend "Produkt" genannt) sind das Erzeugnis zielgerichteter Entwicklung und sorgfältiger Fertigung. Für die einwandfreie Beschaffenheit und Funktion dieser Produkte übernimmt burster ab dem Tag der Lieferung Garantie für Material- und Fabrikationsfehler entsprechend der in der Produktbegleitenden Garantie-Urkunde ausgewiesenen Frist. burster schließt jedoch Garantie- oder Gewährleistungsverpflichtungen sowie jegliche darüber hinausgehende Haftung aus für Folgeschäden, die durch den unsachgemäßen Gebrauch des Produkts verursacht werden, hier insbesondere die implizierte Gewährleistung der Marktgängigkeit sowie der Eignung des Produkts für einen bestimmten Zweck. burster übernimmt darüber hinaus keine Haftung für direkte, indirekte oder beiläufig entstandene Schäden sowie Folge- oder sonstige Schäden, die aus der Bereitstellung und dem Einsatz der vorliegenden Dokumentation entstehen.

The measurement solution.

EU-Konformitätserklärung (nach EN ISO/IEC 17050-1:2010)

EU-Declaration of conformity (in accordance with EN ISO/IEC 17050-1:2010)

Name des Ausstellers: Issuer's name:	burster präzisionsmesstechnik gmbh & co kg	
Anschrift des Ausstellers: Issuer's address:	Talstr. 1-5 76593 Gernsbach, Germany	
Gegenstand der Erklärung: <i>Object of the declaration:</i>	Digitalanzeiger / SENSORMASTER <i>Digital Indicator / SENSORMASTER</i>	
	Modellnummer(n) (Typ): <i>Model number / type:</i>	9163
	Diese Erklärung beinhaltet obengenann	e Produkte mit allen Optionen

This declaration covers all options of the above product(s)

Das oben beschriebene Produkt ist konform mit den Anforderungen der folgenden Dokumente:

The object of the declaration described above is in conformity with the requirements of the following documents:

Dokument-Nr. Documents No.	Titel Title		Ausgabe Edition
2011/65/EU	Richtlinie zur Beschränkung der Elektro- und Elektronikgeräten Directive on the restriction of the electrical and electronic equipme	r Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektronikgeräten <i>the restriction of the use of certain hazardous substances in</i> <i>d electronic equipment</i>	
2014/35/EU	Richtlinie zur Harmonisierung de die Bereitstellung elektrischer Be bestimmter Spannungsgrenzen a Directive on the harmonization of making available on the market of certain voltage limits	ur Harmonisierung der Rechtsvorschriften der Mitgliedsstaaten über ellung elektrischer Betriebsmittel zur Verwendung innerhalb Spannungsgrenzen auf dem Markt In the harmonization of the laws of the Member States relating to the nilable on the market of electrical equipment designed for use within age limits	
2014/30/EU	Richtlinie zur Harmonisierung de die Elektromagnetische Verträglig Directive on the harmonization of electromagnetic compatibility	r Rechtsvorschriften der Mitgliedsstaaten über chkeit f the laws of the Member States relating to	2014
EN 61010-1	Sicherheitsbestimmungen für ele Laborgeräte – Teil 1: Allgemeine Safety requirements for electrical laboratory use – Part 1: General	ktrische Mess-, Steuer-, Regel- und Anforderungen <i>' equipment for measurement, control and</i> <i>requirements</i>	2010 + Cor.:2011
EN 61326-1	Elektrische Mess-, Steuer-, Rege EMV-Anforderungen – Teil 1: All Electrical equipment for measure EMC requirements – Part 1: Gen	I- und Laborgeräte – gemeine Anforderungen <i>ment, control and laboratory use –</i> eral requirements	2013
EN 55011	Industrielle, wissenschaftliche un Grenzwerte und Messverfahren Industrial, scientific and medical characteristics – Limits and meth	d medizinische Geräte – Funkstörungen – equipment – Radio-frequency disturbance ods of measurement	2009
Gernsbach Ort <i>/ place</i>	20.04.2016 Datum <i>/ date</i>	i.V. Christian Karius <i>Quality Manager</i>	
Dieses Dokument ist en	Isprechend EN ISO/IEC 17050-1:2010 Abs. 6.1g	ohne Unterschrift gültig	

According EN ISO/IEC 17050 this document is valid without a signature.

burster präzisionsmesstechnik gmbh & co kg · Talstr. 1-5 DE-76593 Gernsbach (P.O.Box 1432 DE-76587 Gernsbach) · Tel. +49-7224-6450 · Fax 645-88 www.burster.com info@burster.com burster is ISO 9001:2008 certified

Geschäftsführer/Managing Director: Matthias Burster · Handelsregister/Trade Register: Gernsbach · Registergericht/Register Court: Mannheim HRA 530170 Kompl./Gen. Partn.: burster präzisionsmesstechnik Verwaltungs-GmbH · Handelsregister/Trade Register: Gernsbach · Registergericht/Register Court: Mannheim HRB 530130 UST.-Identnr./VAT No. DE 144 005 098 · Steuernr./Tax Ident No. 39454/10503 Commerzbank AG Rastatt Kto./Acc. 06 307 073 00 BLZ/Bank code 662 800 53 · Volksbank Baden-Baden*Rastatt eG Kto./Acc. 302 082 00 BLZ/Bank code 662 900 00

9163 als Einbaugerät

9163 als Tischgerät

Inhaltsverzeichnis

1.	Zu Ihr	er Sichei	rheit	11
	1.1	Symbo	le	11
	1.2	Allgem	eine Warnungen	12
2.	Einfüh	nrung		13
	2.1	Bestim	mungsgemäßer Gebrauch	13
	2.2	Kunde	nservice	14
		2.2.1	Kundendienst	14
		2.2.2	Werksgarantie	14
		2.2.3	Adresse	14
		2.2.4	Gerätedaten	15
	2.3	Grunda	ausführung	15
	2.4	Option	en	15
		2.4.1	Einbaugerät	15
		2.4.2	Tischgerät	15
		2.4.3	Software DigiVision 9163-P100	16
3.	Betrie	bsvorbe	reitung	17
	3.1	Auspa	cken	17
	3.2	Einbau	ı / Schalttafelmontage	18
		3.2.1	Einbaumaße	18
		3.2.2	Einbauhinweise	18
4.	Elektri	ische An	schlüsse	21
	4.1	Einbau	ıgerät	22
		4.1.1	Ein- und Ausgänge der Version 9163-Vxxxx0 (Einkanalgerät)	22
		4.1.2	Ein- und Ausgänge der Version 9163-Vxxxx1 (Zweikanalgerät)	27
		4.1.3	Ein- und Ausgänge beider Versionen	35
		4.1.4	Spannungsversorgung	40
	4.2	Tischg	erät	42
		4.2.1	Steckerbelegung	43
		4.2.2	Anschlüsse	46

Digitalanzeiger burster

5.	Bedienelemente		55	
6.	Einscl	halten		57
	6.1	Eigend	iagnose	57
	6.2	Messbe	etrieb	57
	6.3	Fehler	während des Messbetriebs	58
7.	Grund	llegende	Bedienung	59
	7.1	Aufein	bestimmtes Menü zugreifen	59
	7.2	Auf die	Parameter des Menüs zugreifen	59
	7.3	Parame	eterwert einstellen	60
	7.4	Zum Ha	auptmenü zurückkehren	60
	7.5	Bedien	struktur	61
		7.5.1	Ebene 1	61
		7.5.2	Hauptmenü	62
8.	Inform	nationen	über den aktuellen Zustand abrufen	63
	8.1	Softwar	reversion anzeigen	63
	8.2	Geräteo	code anzeigen	63
	8.3	Fehlerc	ode für einen bestimmten Eingang anzeigen	64
	8.4	Positio	n des Dezimalpunktes anzeigen	65
	8.5	Skalen	werte anzeigen	66
9.	Konfig	guration	von Eingängen	69
	9.1	Konfigu	ırieren eines Haupteingangs	69
	9.2	Konfigu	irieren eines Hilfseingang	75
	9.3	Auswal	hl der Sensorspeisung	79
	9.4	Wahl de	er Transmitterspeisung 15 V / 24 V	80
10.	Konfig	guration	von Ausgängen	81
	10.1	Festleg	en der Ausgangsparameter	81
	10.2	Auswal	hl des Analogausgangs	82
	10.3	Feinein	stellung des Analogausgangs	85
	10.4	Grenzw	verteinstellung	86
		10.4.1	Grenzwertfreigabe	88
		10.4.2	Grenzwert konfigurieren	88
		10.4.3	Grenzwert einstellen	96
		10.4.4	Wahl des Kontakttyps (Öffner/Schließer)	97

burster Digitalanzeiger

Тур 9163

11.	Konfigu	ration der Schnittstellen	98
	11.1	Serielle Schnittstelle konfigurieren	
	11.2	Profibusanbindung (nur für Geräte mit Profibus-Option)	99
12.	Konfigu	ration des Geräts	
	12.1	Auf den geschützten Bereich zugreifen	101
	12.2	Parametersperre	102
	12.3	Geräteeinstellungen	105
		12.3.1 Mathematische Funktionen	105
		12.3.2 Tastenbelegung	111
		12.3.3 Digitaleingänge	113
		12.3.4 Displayeinstellungen	115
13.	Sensors	spezifischer Abgleich	118
	13.1	Potentiometer oder Linearsignale	118
	13.2	DMS-Sensoren und DMS-Simulatoren	121
	13.3	RTD (PT100)	129
	13.4	Thermopaare (TC)	131
	13.5	Eingang linearisieren	132
	13.6	Den Abgleich auf die Werkseinstellung zurücksetzten	136
14.	Geräte /	Aktivierung / Deaktivierung per Software (StandBy)	139
	14.1	Ausschalten (Deaktivieren / StandBy)	139
	14.2	Einschalten (Aktivieren)	139
	14.3	Die EIN / AUS-Funktion komplett deaktivieren	139
15.	Wartung	9	141
	15.1	Reinigung	141
	15.2	Reparatur	141
	15.3	Problemlösung	142
16.	Technis	che Daten	143
17.	Zuberhö	orteile und Optionen	145
18.	Anhang		147
	18.1	Menüeinträge	147
	18.2	Blockdiagramm	158
	18.3	Funktionsblockdiagramm	

1. Zu Ihrer Sicherheit

1.1 Symbole

Dieses Symbol am Gerät ist eine Warnung vor einer Gefahrenstelle. (Dokumentation beachten!)

VORSICHT - LEBENSGEFAHR!

In diesem Handbuch warnt vor möglichen Gefahren für Leben und Gesundheit von Personen.

WARNUNG!

In diesem Handbuch bezieht sich auf mögliche Gefahren für Leben und Gesundheit von Personen.

ACHTUNG!

In diesem Handbuch bezieht sich auf mögliche Gefahren für Leben und Gesundheit von Personen sowie Schäden an Sachwerten.

Hinweis:

Diese Hinweise sollten beachtet werden, um die korrekte Handhabung des Gerätes zu gewährleisten

1.2 Allgemeine Warnungen

WARNUNG!

Beachten Sie die folgenden Hinweise, um einem elektrischen Schlag und Verletzungen vorzubeugen:

- → Beachten Sie alle Sicherheitshinweise und -anweisungen.
- → Legen Sie keine höheren Spannungen an als die Spezifizierten. Die unterstützten Bereiche finden Sie in den technischen Daten.
- ➔ Trennen Sie den Digitalanzeiger, bevor Sie ihn öffnen, von der Spannungsversorgung.
- → Stellen Sie vor der Inbetriebnahme des Geräts sicher, dass alle Parametersätze korrekt sind.
- → Verwenden Sie das Gerät nicht, wenn es beschädigt ist.
- → Setzen Sie dass Gerät niemals in explosionsgefährdeten Bereichen ein.

ACHTUNG!

Beachten Sie die folgenden Punkte um Verletzungen und Sachschäden vorzubeugen:

- → Das 230 V Gerät entspricht Schutzklasse II, Installationskategorie II.
- → Geräte mit Spannungsversorgung: 20...27 V AC/DC dürfen nur aus einer Stromquelle der Schutzklasse III versorgt werden.
- → Sehen Sie vor dem Gerät einen zweipoligen Trennschalter (mit CE-Kennzeichnung), zum Unterbrechen der Spannungsversorgung, vor. Der Schalter muss in der unmittelbaren Nähe des Geräts installiert werden und vom Bediener leicht zu erreichen sein. Ein einzelner Schalter darf mehrere Geräte steuern.
- Die angeschlossenen externen Steuerstromkreise müssen eine Schutzisolierung haben.
- ➔ Die Platinen des Geräts sind empfindlich gegenüber elektrostatischer Spannung. Behandeln Sie die Platinen mit entsprechender Vorsicht.
- ➔ Verwenden Sie zum Reinigen niemals Lösungsmittel auf Kohlenwasserstoffbasis (z.B. Benzin etc).

2. Einführung

Dieses Gerät eignet sich zum Erfassen von elektrischen Größen mit hoher Dynamik. Dazu stehen, unter anderem, bis zu zwei analoge Haupteingänge sowie zwei Hilfseingänge zur Verfügung. Diese bieten zahlreiche Anwendungsmöglichkeiten, z.B. die Differenzmessung.

Die Haupteingänge eignen sich für lineare Standardsignale sowie für Drucksensoren, Kraftmessdosen, Potentiometer, Thermoelemente und Widerstandsthermometer. Eine kundenspezifische Eingangslinearisierung ist ebenfalls möglich.

Sie können die Eingänge über das Tastenfeld konfigurieren.

Diese Anzeigerrserie von burster ist eine ideale Lösung für alle Applikationen, bei denen hohe Leistungen und ein unterbrechungsfreier Betrieb eine wichtige Rolle spielen.

Das gilt zum Beispiel für:

- Druckmessung und -überwachung (Absolutwert oder Differenz)
- Lagemessung und -überwachung
- Überwachung der Grenzwerte von Messgrößen in automatischen Systemen mit schnellen Prozessen, mit Möglichkeit der Signalrückübertragung

Zusätzlich, zu den analogen Eingängen, verfügt das Gerät über zwei digitale Eingänge. Damit sind Funktionen wie Reset und Hold möglich.

Außerdem stehen bis zu vier Relais- oder Logikausgänge mit konfigurierbarer Funktion zur Verfügung.

Ein optionaler (optoisolierter) Analogausgang mit hoher Auflösung für Funktionen, wie analoge Signalrückübertragung von Istwerten, Spitzenwerten, Grenzwerten und Differenzwerten ist ebenfalls lieferbar.

Optional kann der Digitalanzeiger 9163 mit einer Profibus-DP-Schnittstelle ausgerüstet werden. Diese Schnittstelle erlaubt die einfache Anbindung des Digitalanzeigers 9163 an ein Automatisierungssystem.

2.1 Bestimmungsgemäßer Gebrauch

Der Digitalanzeiger 9163 eignet sich zum Erfassen von elektrischen Größen mit hoher Dynamik. Er bietet zahlreiche Anwendungsmöglichkeiten, die Differenzmessung eingeschlossen.

Die Eingänge des 9163 werden über das Tastenfeld konfiguriert. Sie eignen sich für lineare Standardsignale sowie für Drucksensoren, Kraftmessdosen, Potentiometer, Thermoelemente und Widerstandsthermometer. Eine kundenspezifische Eingangslinearisierung ist ebenfalls möglich.

2.2 Kundenservice

2.2.1 Kundendienst

Bei Fragen zu Reparaturen

Setzen Sie sich mit uns in Verbindung:

Telefon 07224-645-53

In diesen Fällen bitten wir Sie, die Serien-Nummer anzugeben. Nur mit dieser können wir den technischen Stand ihres Gerätes feststellen und damit eine schnelle Hilfe ermöglichen.

Die Serien-Nummer finden Sie auf dem Typenschild.

2.2.2 Werksgarantie

burster präzisionsmesstechnik gmbh & co kg gibt eine Herstellergarantie für die Dauer von 24 Monaten nach der Auslieferung.

Innerhalb dieser Zeit anfallende Reparaturen werden kostenlos ausgeführt.

Schäden, die durch den unsachgemäßen Gebrauch des Gerätes verursacht werden, fallen nicht unter die Garantieverpflichtungen.

Wenn Sie das Gerät zu Reparaturarbeiten einschicken, müssen Sie bezüglich der Verpackung und des Versandes folgendes beachten:

- Bei einer Beanstandung des Gerätes bringen Sie bitte am Gehäuse eine Notiz an, die den Fehler stichwortartig beschreibt.
- Technische Daten können jederzeit ohne Ankündigung geändert werden. Ebenso weisen wir ausdrücklich darauf hin, dass für Folgeschäden jegliche Haftung ausgeschlossen wird.

2.2.3 Adresse

burster präzisionsmesstechnik Gmbh & co kgTalstraße1-5D-76593GernsbachTelefon:07224 - 645 - 0Fax:07224 - 645 - 88E-Mail:info@burster.de

2.2.4 Gerätedaten

Tragen Sie, nach dem Auspacken des Geräts, die Daten des Typenschilds in die untenstehende Tabelle ein.

Wenn Sie den burster-Kundendienst in Anspruch nehmen, müssen Sie diese Daten angeben.

SN:	(Seriennummer)
CODE:	(Fertigproduktcode)
Туре:	(Bestellcode)
Supply:	(Typ der Spannungsversorgung)
VERS:	(Software Version)
•	

2.3 Grundausführung

- 1 Haupteingang für DMS-Sensoren, Potentiometer, DC/DC-Sensor, PT100 oder Thermoelemente.
- 2 Hilfseingänge für Normsignale und Potentiometer
- 1 Spannungsversorgung für Transmitter
- 2 konfigurierbare Digitaleingänge p-schaltend (PNP)
- 1 Sensorspeisung nach Wahl, geeignet für DMS-Sensoren, Potentiometer oder Transmitter
- 4 Ausgänge: Relaisausgänge OUT1, OUT2, OUT3 und OUT4

2.4 Optionen

2.4.1 Einbaugerät

- Ein zusätzlicher Haupteingang (nützlich für Differenzmessungen)
- Analogausgang
- optoisolierte serielle Schnittstelle RS232, RS485
- Profibusanschluss

2.4.2 Tischgerät

- Ein zusätzlicher Haupteingang (nützlich für Differenzmessungen)
- Analogausgang
- optoisolierte serielle Schnittstelle RS232, RS485
- USB-Anschluss

2.4.3 Software DigiVision 9163-P100

Der Digitalanzeiger 9163 ist Teil einer Gerätefamilie, die von der PC-Messdatenerfassungssoftware DigiVision unterstützt wird. Vorraussetzung für diese Unterstützung ist die Option RS232 / RS485 des Digitalanzeigers.

Mit dieser kostenpflichtigen Zusatzsoftware können Sie, gleichzeitig, bis zu acht Messungen visualisieren. Dabei bietet DigiVision die Möglichkeit der Darstellung von verschiedenen Prozess- und Prüfinformationen.

Zusätzlich können Sie, mit DigiVision, auf verschiedene Einstellungen und Optionen des 9163 zugreifen.

Finstellungen Messhetrieb 🛛	Kinstellungen Messhetrieb
iundkontiguiation Kansteinstellungen Trigger Dokumentiston	Grundkontiguration Kanaleinstellungen Trigger Dekumentation
Mosmod Standard D Einzelmesswertepsolokollerung	Koniguaton (9) Ale Kanäle () Kanälezogen
Darikulung	Allo Sandio - Start Togae Endelung M Admattches Autiens nech Zeitougele Dauer (Howe 11330 17 /01527)
SKand O SKand	Atuele 2-it 13.09.07 06:20:49 Stope Tigget Entating Discourse Biologies Entating Discourse Biologies (Biologies)
Erel Antualiscet (d) 025 V Software Zaklenier (d) 0 0 0	100 CLO C P C P DODDO C
Linker Marketa Referers Currer Diversent 1 Samsent 2 Garasent 3 Garasent 4 Line Solite Solite 1 - Anadopen 1 Type Solite Sol	
Abbiechen	a CK Atbacten

DigiVision bietet Ihnen ebenfalls die Möglichkeit, Messdaten in eine Excel-Datei zu überführen.

Archiv	betrachter				
Pierokole	0.				Dom
080	Messdeluar	Geratelyp	Kanal Baulei	Charge	Algemein Daten
OK.	1209.0711.3243	9205	3.		1234
OK.	130907113343	5205 19205	3		Algemein Messiveste
K)	1		1497) 1	2	Firbeit mm
Gialon					Start 13.09.07.11-32:43
40 T	<u> </u>	*****		******	August 2057
I				3	Million 2007
30					A Max Zub, 31
1	111100			1	YMin +U,UU
					у Мак +28,98
9 20 + 8 -	AND A TUR				GW 1 0,00 (365)
÷ 1	AND FULLY				GW 2 0.00 (2057)
§ 10 -	114111111	10			GW 3 3,00 (1612)
- E		1			GW 4 4,00 (1608)
。 +		¥			
it				1	
				1	Cuoner .
10.4	10 10 10 10 10 10	20	80 42		Referenzpunkt
			a		Abstand X/Y
Zoom R	lückgängig ales Rückgä	-99			LUSOPDINON 33,Z785 8,1515
				Exportieren	Deucken Breenden
4 Messprot	okole geladen				

burster Excel-Messwerte		
Original Messprotokolidatei	C:\Dokumente und Einst	talungan\All Users\Dakumente\burster\DigVision
Fortlaufende Dateinummer	t	
Beginn	13.09.2007 11:33:43	
Firma	burster	
Profer	User	
Gerätebezeichnung	10000334	
Geräte-SN.	10000334	
Einheit 💷 🔤 🗕	EN/V	
Anzahl Messwerte	2057	
Messwertereihe		
Zähler	Zeit	Messwert
1	0.002830	2,001
2	0.052580	2,000
3	0.151940	2,000
4	0.251430	2,000
5	0.352050	2,000
6	0.451520	2,000
7	0.552150	2,000
8	0.652120	2,000
9	0.751610	2,000
10	0.852480	2,000
11	0.952050	2,000
12	1.052320	2,000
13	1.151940	2,000
14	1.251790	2,000
15	1.351650	2,000
16	1.451350	2.010

3. Betriebsvorbereitung

3.1 Auspacken

Erledigen Sie diese Dinge gleich nach dem Auspacken:

Tragen Sie die technischen Daten des Typenschilds in die Tabelle im Kapitel 2.2.4: "Gerätedaten" ein.

Wenn Sie den burster-Kundendienst in Anspruch nehmen, müssen Sie diese Daten angeben.

- > Prüfen Sie das Gerät sorgfältig auf Beschädigungen.
- > Kontrollieren Sie die Vollständigkeit der Lieferung.

Zur normalen Lieferung gehören:

- o Digitalanzeiger 9163
- o 2 Befestigungsbügel
- o Berührungsschutz
- Staubschutzdichtung
- Bedienungsanleitung
- > Stellen Sie sicher, dass der Bestellcode mit der Gerätekonfiguration übereinstimmt.

Der Digitalanzeiger muss für die entsprechende Applikation geeignet sein.

- Anzahl und Typ der verfügbaren Eingänge bzw. Ausgänge
- o Erforderliche Optionen und Zubehöreinrichtungen
- o Versorgungsspannung
- Melden Sie alle Unstimmigkeiten, fehlende Teile oder Anzeichen f
 ür eine Besch
 ädigung unverz
 üglich an burster.
- Lesen Sie, vor dem Einbau eines Geräts der Serie 9163 in die Schalttafel, das Kapitel 3.2: "Einbau / Schalttafelmontage".

3.2 Einbau / Schalttafelmontage

3.2.1 Einbaumaße

Abbildung 1: Einbaumaße des Digitalanzeiger 9163

3.2.2 Einbauhinweise

> Lesen Sie vor der Installation die grundlegenden Regeln für den Einbau!

Wenn Sie unsere Sicherheitshinweise nicht beachten, kann es zu Problemen mit der elektrischen Sicherheit und der elektromagnetischen Verträglichkeit kommen.

Die Missachtung der Sicherheitshinweise zieht außerdem das Erlöschen der Garantie nach sich.

Grundlegende Regeln für den Einbau des 9163

Wenn Sie das Gerät an elektrisch **nicht** isolierte Einrichtungen (z.B. Thermoelemente) anschließen:

> Realisieren Sie die Erdverbindung mit einem eigenen Leiter.

Die Erdverbindung darf keinesfalls direkt über das Maschinengestell hergestellt werden.

Wenn Sie das Gerät in Applikationen installieren, bei denen die Gefahr von Schäden an Personen, Maschinen oder Sachen besteht:

- > Koppeln Sie es mit zusätzlichen Grenzwerteinrichtungen.
- > Kontrollieren Sie die Auslösung des Grenzwerts regelmäßig während des Betriebs.

Wenn Fühler in einer entzündlichen oder explosiven Umgebung arbeiten:

> Schließen Sie diese ausschließlich über geeignete Trennstellen an das Gerät an.

Alle Schnittstellen müssen den geltenden Vorschriften entsprechen.

- Verlegen Sie die Netzspannungsleitungen getrennt von den Ein- und Ausgangsleitungen des Geräts.
- > Ordnen Sie Fühlerleitungen getrennt vom Leistungsteil und den Relais an.
- Bauen Sie die Geräte keinesfalls in Schaltanlagen ein, in denen auch Hochleistungsfernschalter, Schütze, Relais, Thyristorsteller (insbesondere solche mit Phasenanschnitt), Motoren usw. installiert sind.
- > Setzen Sie das Gerät niemals Staub, Feuchtigkeit, aggressiven Gasen und Wärmequellen aus.
- > Achten Sie darauf, dass die Lüftungsschlitze offen sind.

Die Lüftungsschlitze dürfen niemals abgedeckt sein.

Die Betriebstemperatur muss in einem Bereich zwischen 0 bis 50 °C liegen.

Die maximale Umgebungstemperatur beträgt 50 °C

> Verwenden Sie Kabelschuhe für ein Anzugsdrehmoment von 0,5 Nm.

ACHTUNG!

Gefahr eines elektrischen Schlages!

Das 230 V Gerät entspricht Schutzklasse II, Installationskategorie II

Geräte mit Spannungsversorgung: 20...27V AC/DC dürfen nur aus einer Stromquelle der Schutzklasse III versorgt werden.

Das Einbaugerät hat keinen Ein-Aus-Schalter!

Sehen Sie vor dem Gerät einen zweipoligen Trennschalter (mit CE-Kennzeichnung), zum Unterbrechen der Spannungsversorgung, vor.

Der Schalter muss in der unmittelbaren Nähe des Geräts installiert werden und vom Bediener leicht zu erreichen sein.

Ein einzelner Schalter darf mehrere Geräte steuern.

Digitalanzeiger burster

Für die Montage des Digitalanzeigers finden Sie in der Verpackung:

- Befestigungsbügel für den Schalttafeleinbau (A)
- Schutzdichtung gegen Staub und Spritzwasser (B)
- > Bauen Sie den Digitalanzeiger, wie in der Abbildung dargestellt, in die Schalttafel ein.

Abbildung 2: Einbau des Digitalanzeigers

burster Digitalanzeiger

4. Elektrische Anschlüsse

ACHTUNG!

Gefahr eines elektrischen Schlages!

Das 230 V Gerät entspricht Schutzklasse II, Installationskategorie II

Geräte mit Spannungsversorgung: 20...27V AC/DC dürfen nur aus einer Stromquelle der Schutzklasse III versorgt werden.

Das Einbaugerät hat keinen Ein-Aus-Schalter!

Sehen Sie vor dem Gerät einen zweipoligen Trennschalter (mit CE-Kennzeichnung) zum Unterbrechen der Spannungsversorgung vor. Der Schalter muss in der unmittelbaren Nähe des Geräts installiert und leicht vom Bediener zu erreichen sein.

Ein einzelner Schalter darf mehrere Geräte steuern.

Alle Anschlussklemmen befinden sich auf der Rückseite des Geräts.

Die "Technischen Daten" finden Sie im Kapitel 16: "Technische Daten".

Funktion	Kabeltyp	Länge
Anschlussleitung	bis 1 mm²	1 m
Anschlussleitungen Relaisausgang	bis 1 mm²	3,5 m
Serielles Verbindungskabel	bis 0,35 mm²	3,5 m
Eingang für Thermoelement	bis 0,8 mm² kompensiert	5 m
Eingang für DMS-Sensoren, Potentiometer, Linearsignale Widerstandsthermometer "PT100"	bis 1 mm²	3 m
Analogausgänge für Signalrückübertragung	bis 1 mm ²	3,5 m
Digitale Eingänge / Ausgänge	bis 1 mm²	3,5 m

4.1 Einbaugerät

4.1.1 Ein- und Ausgänge der Version 9163-Vxxxx0 (Einkanalgerät)

ACHTUNG!

Gefahr eines elektrischen Schlages!

Die angeschlossenen externen Steuerstromkreise müssen eine Schutzisolierung haben.

Hinweis:

Alle Kondensatoren müssen der VDE-Standardklasse (Klasse x2) entsprechen und einer Spannung von mindestens 230 V AC standhalten. Die maximale Verlustleistungsfähigkeit des Widerstandes muss mindestens 2 W betragen.

Hinweis:

Die Firma burster präzisionsmesstechnik gmbH & co kg übernimmt in keinem Fall die Haftung für Sachoder Personenschäden, die auf unbefugte Eingriffe, auf unsachgemäße oder den technischen Eigenschaften des Geräts nicht angemessene Bedienung oder Anwendung oder auf den Gebrauch im Widerspruch zu den Vorschriften in der vorliegenden Bedienungsanweisung zurückzuführen sind.

Beim Anschluss des Geräts gilt:

- Verlegen Sie die Eingangsleitungen getrennt von den Leitungen f
 ür die Spannungsversorgung, den Ausg
 änge und den Hauptstromverbindungen.
- Verwenden Sie verdrillte bzw. abgeschirmte Kabel, deren Schirm mindestens an einem Ende geerdet ist.
- > Schalten Sie, an Ausgangsleitungen, die unter Last geschaltet werden (Schütze, Magnetventile, Motoren, Gebläse usw.), ein RC-Glied (Widerstand und Kondensator in Reihe) parallel zur Last.

Damit unterdrücken Sie Störaussendungen.

Schalten Sie, bei induktiver Last, eine Diode vom Typ 1N4007 parallel zur Last.

burster Digitalanzeiger

Elektrische Anschlüsse 9163-Vxxxx0

Abbildung 3: Die elektrischen Anschlüsse des Digitalanzeigers, Version 9163-**Vxxxx0**, im Überblick

Eingang IN1 DMS-Sensor 4-Leiter

Hinweis:

Die Größe des Kalibrierwiderstandes finden Sie im Prüf- und Kalibrierprotokoll des Sensors.

Eingang IN1 TC – Thermopaar

Sie können Thermopaare der Typen J, K, R, S und T anschließen.

Nach einer kundenspezifischen Linearisierung können Sie auch Thermopaare der Typen B, E, N, L, U, G, D und C anschließen.

- > Achten Sie auf die Polarität.
- > Verwenden Sie zur Leitungsverlängerung eine geeignete Kompensationsleitung.

Eingang IN1 mit vom Gerät gespeistem 3-Leiter-Transmitter

Der Sensortyp ist abhängig vom gewählten Transmitter.

Eingang IN1 mit vom Gerät gespeistem 2-Leiter-Transmitter

Eingang IN1 (Strom)

Dieser Eingang ist für ein lineares Gleichstromsignal geeignet.

Stromstärke	Innenwiderstand
0/4 mA bis 20 mA	50 Ω

Eingang IN1 (Spannung)

Dieser Eingang ist für ein lineares Gleichspannungssignal geeignet.

Spannung	Innenwiderstand
±60 mV	>10 MΩ
±100 mV	>10 MΩ
±1,0 V	>2 MΩ
±5,0 V	>2 MΩ
±10,0 V	>2 MΩ

Eingang IN1 Potentiometer

Eingang IN1 PT100

Hinweis:

Verwenden Sie nur Anschlussleitungen mit einem angemessenen Querschnitt, d.h. > 1 mm².

4.1.2 Ein- und Ausgänge der Version 9163-Vxxxx1 (Zweikanalgerät)

ACHTUNG!

Gefahr eines elektrischen Schlages!

Die angeschlossenen externen Steuerstromkreise müssen eine Schutzisolierung haben.

Hinweis:

Alle Kondensatoren müssen der VDE-Standardklasse (Klasse x2) entsprechen und einer Spannung von mindestens 230 V AC standhalten. Die maximale Verlustleistungsfähigkeit des Widerstandes muss mindestens 2 W betragen.

Hinweis:

Die Firma burster präzisionsmesstechnik Gmbh & co kg übernimmt in keinem Fall die Haftung für Sachoder Personenschäden, die auf unbefugte Eingriffe, auf unsachgemäße oder den technischen Eigenschaften des Geräts nicht angemessene Bedienung oder Anwendung oder auf den Gebrauch im Widerspruch zu den Vorschriften in der vorliegenden Bedienungsanweisung zurückzuführen sind.

Beim Anschluss des Geräts gilt:

- Verlegen Sie die Eingangsleitungen getrennt von den Leitungen f
 ür die Spannungsversorgung, den Ausg
 änge und den Hauptstromverbindungen.
- Verwenden Sie verdrillte bzw. abgeschirmte Kabel, deren Schirm mindestens an einem Ende geerdet ist.
- Schalten Sie, an Ausgangsleitungen, die unter Last geschaltet werden (Schütze, Magnetventile, Motoren, Gebläse usw.), ein RC-Glied (Widerstand und Kondensator in Reihe) parallel zur Last.

Damit unterdrücken Sie Störaussendungen.

> Schalten Sie, bei induktiver Last, eine Diode vom Typ 1N4007 parallel zur Last.

Elektrische Anschlüsse 9163-Vxxxx1

Abbildung 4: Die elektrischen Anschlüsse der Version 9163-Vxxxx1 im Überblick

Eingang IN1 DMS-Sensor 4-Leiter

Hinweis:

Schließen Sie die Sensorleitung "CAL" an die Klemme 24 an, damit diese auf dem gleichen Potential wie "-Exc" ist. Sind die Anschlussleitungen vertauscht, zeigt der Digitalanzeiger nach einer 80 % Kalibration den Fehler "H " bzw. "E.C.RL..x".

Die Größe des Kalibrierwiderstandes finden Sie im Prüf- und Kalibrierprotokoll des Sensors.

Eingang IN2 DMS-Sensor 4-Leiter

Hinweis:

Schließen Sie die Sensorleitung "CAL" an die Klemme 26 an, damit diese auf dem gleichen Potential wie "-Exc" ist. Sind die Anschlussleitungen vertauscht, zeigt der Digitalanzeiger nach einer 80 % Kalibration den Fehler "H " bzw. "E.C.RL.x".

Die Größe des Kalibrierwiderstandes finden Sie im Prüf- und Kalibrierprotokoll des Sensors.

Eingang IN1 TC – Thermopaar

★ Pt100 für mögliche Kompensation der externen Vergleichsstelle

Eingang IN2 TC – Thermopaar

★ Pt100 f
ür m
ögliche Kompensation der externen Vergleichsstelle

Sie können Thermopaare der Typen J, K, R, S und T anschließen.

Nach einer kundenspezifischen Linearisierung können Sie auch Thermopaare der Typen B, E, N, L, U, G, D und C anschließen.

- > Achten Sie auf die Polarität.
- > Verwenden Sie zur Leitungsverlängerung eine geeignete Kompensationsleitung.

Eingang IN1 mit vom Gerät gespeistem 3-Leiter-Transmitter

Eingang IN2 mit vom Gerät gespeistem 3-Leiter-Transmitter

Der Sensortyp ist abhängig vom gewählten Transmitter.

Eingang IN1 mit vom Gerät gespeistem 2-Leiter-Transmitter

Eingang IN2 mit vom Gerät gespeistem 2-Leiter-Transmitter

Eingang IN1 (Strom)

Dieser Eingang ist für ein lineares Gleichstromsignal geeignet.

Stromstärke	Innenwiderstand
0/4 mA bis 20 mA	50 Ω

Eingang IN1 (Spannung)

Dieser Eingang ist für ein lineares Gleichspannungssignal geeignet.

Spannung	Innenwiderstand
±0,06 V	>10 MΩ
±0,1 V	>10 MΩ
±1,0 V	>2 MΩ
±5,0 V	>2 MΩ
±10,0 V	>2 MΩ

Eingang IN2 (Strom)

Dieser Eingang ist für ein lineares Gleichstromsignal geeignet.

Stromstärke	Innenwiderstand
0/4 mA bis 20 mA	50 Ω

Eingang IN2 (Spannung)

Dieser Eingang ist für ein lineares Gleichspannungssignal geeignet.

Spannung	Innenwiderstand
±60 mV	>10 MΩ
±100 mV	>10 MΩ
±1,0 V	>2 MΩ
±5,0 V	>2 MΩ
±10,0 V	>2 MΩ

Eingang IN1 Potentiometer

Potentiometer $R \ge 100 \Omega$ Spannungsversorgung 2,5 V

Eingang IN2 Potentiometer

Potentiometer R \ge 100 Ω Spannungsversorgung 2,5 V

Eingang IN1 PT100

2-Leiter-Anschluss

Hinweis:

Verwenden Sie nur Drähte mit einem angemessenen Querschnitt, d.h. > 1 mm².

Eingang IN2 PT100

2-Leiter-Anschluss

3-Leiter-Anschluss

3-Leiter-Anschluss

Hinweis:

Verwenden Sie nur Drähte mit einem angemessenen Querschnitt, d.h. > 1 mm².

4.1.3 Ein- und Ausgänge beider Versionen

ACHTUNG!

Gefahr eines elektrischen Schlages!

Die angeschlossenen externen Steuerstromkreise müssen eine Schutzisolierung haben.

Hinweis:

Alle Kondensatoren müssen der VDE-Standardklasse (Klasse x2) entsprechen und einer Spannung von mindestens 230 V AC standhalten. Die maximale Verlustleistungsfähigkeit des Widerstandes muss mindestens 2 W betragen.

Hinweis:

Die Firma burster präzisionsmesstechnik Gmbh & co kg übernimmt in keinem Fall die Haftung für Sachoder Personenschäden, die auf unbefugte Eingriffe, auf unsachgemäße oder den technischen Eigenschaften des Geräts nicht angemessene Bedienung oder Anwendung oder auf den Gebrauch im Widerspruch zu den Vorschriften in der vorliegenden Bedienungsanweisung zurückzuführen sind.

Beim Anschluss des Geräts gilt:

- Verlegen Sie die Eingangsleitungen getrennt von den Leitungen f
 ür die Spannungsversorgung, den Ausg
 änge und den Hauptstromverbindungen.
- Verwenden Sie verdrillte bzw. abgeschirmte Kabel, deren Schirm mindestens an einem Ende geerdet ist.
- Schalten Sie, an Ausgangsleitungen, die unter Last geschaltet werden (Schütze, Magnetventile, Motoren, Gebläse usw.), ein RC-Glied (Widerstand und Kondensator in Reihe) parallel zur Last.

Damit unterdrücken Sie Störaussendungen.

> Schalten Sie, bei induktiver Last, eine Diode vom Typ 1N4007 parallel zur Last.

Eingänge IN3, IN4 mit vom Gerät gesp. 3-Leiter-Transmitter

Eingänge IN3, IN4 mit vom Gerät gesp. 2-Leiter-Transmitter

Eingänge IN3 und IN4 (Strom)

Eingänge IN3 und IN4 (Spannung)

Eingänge IN3 und IN4 Potentiometer

Vpot steht für die Versorgungsspannung des Potentiometers.

Digitaleingänge DI1 und DI2

Digitaleingänge (PNP): 24V, maximal 5 mA (Werkseinstellung).

Potentialfreier Kontakt (NPN): maximal 5 mA (Hd1).

Die Digitaleingänge DI1 und DI2 aktivieren Sie mit dem Parameters d ، δ.x, im Menü Hr d.

Weitere Informationen finden Sie im Kapitel 12.3.3: "Digitaleingänge" auf der Seite 113.

Ausgänge OUT1, OUT2, OUT3 und OUT4 (Relais)

Relais: 5 A, 250 V AC / 30 V DC

Digitale Ausgänge

Anschluss des Analogausgangs

Sie haben folgende Möglichkeiten:

02 ... 10 V, ±10 V, max. 25 mA kurzschlussgeschützt

04 ... 20 mA bei einer maximalen Last von 500 Ω

Wahl des Typs mittels Konfigurationsparameter.

Serielle Schnittstelle: RS232

Serielle Schnittstelle: RS485 2-Leiter (Standard)

WARNUNG!

Bei angelegter Spannung erhalten Sie einen elektrischen Schlag. Trennen Sie den Digitalanzeiger, bevor Sie ihn öffnen, von der Spannungsversorgung.

Terminierungswiderstand 120 Ω zuschaltbar durch:

Jumper S3 geschlossen, S2 geöffnet.

Polarisierung zuschaltbar durch:

Jumper S4 geschlossen (S6,S7,S9 geschlossen; S8 geöffnet)

Serielle Schnittstelle: RS485 4-Leiter

WARNUNG!

Bei angelegter Spannung erhalten Sie einen elektrischen Schlag! Trennen Sie den Digitalanzeiger, bevor Sie ihn öffnen, von der Spannungsversorgung.

Terminierungswiderstand 120 Ω zuschaltbar durch:

Jumper S3 geschlossen (Tx), S2 geschlossen (Rx).

Polarisierung zuschaltbar über Rx durch:

Jumper S4, S5 geschlossen (S6,S7,S9 geöffnet; S8 gegeschlossen)

4.1.4 Spannungsversorgung

Bevor Sie den 9163 an die Spannungsversorgung anschließen:

Stellen Sie sicher, dass das Gerät für die jeweilige Versorgungsspannung geeignet ist.
 Die geeignete Versorgungsspannung ergibt sich aus dem Bestellcode des Geräts:

Bestellcode	Versorgungsspannung			
9163-V0xxxx	100	bis	240 V AC/DC	
9163-V1xxxx	20	bis	27 V AC/DC	

- Sehen Sie f
 ür die Spannungsversorgung der elektronischen Instrumente in den Schalttafeln eine Trennvorrichtung mit Sicherung vor.
- Verwenden Sie f
 ür die elektrischen Anschl
 üsse immer geeignete Kabel, die den angegebenen Spannungs- und Stromwerten gen
 ügen.

Weitere Informationen zu geeigneten Kabeln finden Sie im Kapitel 4: "Elektrische Anschlüsse" auf der Seite 21.

Die Strom und Spannungswerte finden Sie im Kapitel 16: "Technische Daten" auf der Seite 143.

9163 über Schraubklemmen anschließen:

- > Sichern Sie die Kabel mindestens paarweise.
- > Schließen Sie den 9163 getrennt von den elektromechanischen Leistungsschaltgeräten an.

Der 9163 und die elektromechanischen Leistungsschaltgeräte wie Relais, Schütze, Magnetventile usw. müssen stets von separaten Leitungen gespeist werden.

> Erden Sie die Anlage.

Dabei gelten folgende Bedingungen:

- Spannung zwischen Neutralleiter und Erde <1V
- o ohmscher Widerstand <6 Ω .
- Verwenden Sie In der N\u00e4he von Hochfrequenzgeneratoren oder Bogenschwei
 ßanlagen geeignete Netzfilter.
- > Verlegen Sie die Netzspannungsleitungen getrennt von den Signalleitungen.

Wenn die Versorgungsleitung der elektronischen Instrumente durch das Schalten von Thyristorstellern oder Motoren stark gestört wird:

> Sehen Sie einen Trenntransformator mit geerdetem Schirm, speziell für den 9163, vor.

Bei stark schwankender Netzspannung:

> Installieren Sie einen Spannungsstabilisator.

Abbildung 5: Spannungsversorgung des Digitalanzeigers

Standard : 100 bis 240 V AC/DC ±10%

Optional: 20 bis 27 V AC ±10%

Leistung: max. 20 VA; 50/60 Hz

Digitalanzeiger burster

4.2 Tischgerät

ACHTUNG!

Gefahr eines elektrischen Schlages!

Die angeschlossenen externen Steuerstromkreise müssen eine Schutzisolierung haben.

Hinweis:

Alle Kondensatoren müssen der VDE-Standardklasse (Klasse x2) entsprechen und einer Spannung von mindestens 230 V AC standhalten. Die maximale Verlustleistungsfähigkeit des Widerstandes muss mindestens 2 W betragen.

Hinweis:

Die Firma burster präzisionsmesstechnik gmbh & co kg übernimmt in keinem Fall die Haftung für Sachoder Personenschäden, die auf unbefugte Eingriffe, auf unsachgemäße oder den technischen Eigenschaften des Geräts nicht angemessene Bedienung oder Anwendung oder auf den Gebrauch im Widerspruch zu den Vorschriften in der vorliegenden Bedienungsanweisung zurückzuführen sind.

Beim Anschluss des Geräts gilt:

- Verlegen Sie die Eingangsleitungen getrennt von den Leitungen f
 ür die Spannungsversorgung, den Ausg
 änge und den Hauptstromverbindungen.
- Verwenden Sie verdrillte bzw. abgeschirmte Kabel, deren Schirm mindestens an einem Ende geerdet ist.
- Schalten Sie, an Ausgangsleitungen, die unter Last geschaltet werden (Schütze, Magnetventile, Motoren, Gebläse usw.), ein RC-Glied (Widerstand und Kondensator in Reihe) parallel zur Last.

Damit unterdrücken Sie Störaussendungen.

Schalten Sie, bei induktiver Last, eine Diode vom Typ 1N4007 parallel zur Last.

4.2.1 Steckerbelegung

Analog-Out / Digital-In / Digital-Out

Blick auf die Geräterückseite

Pin	Belegung	Pin	Belegung
1	+ Analogausgang	8	+ OUT1
2	- Analogausgang Bezugsmasse	9	+ OUT2
3	+ Digitaleingang 1	10	+ OUT3
4	+ Digitaleingang 2	11	+ OUT4
5	- Bezugsmasse Digitaleingänge	12	nicht belegt
6	nicht belegt	13	- Bezugsmasse
7	nicht belegt		

Sensor 1 (IN1) und Sensor 2 (IN2)

Blick auf die Geräterückseite

Pin	Belegung	Pin	Belegung
1	+ Sensorspeisung 5 / 10 V	5	Bezugsmasse 5 / 10 V
2	+ CAL / + RTD	6	+ Signal
3	+ Transmitter-Speisung 15 / 24 V	8	Bezugsmasse 15 / 24 V / Signal
4	- CAL / - RTD	9	- Signal

Sensor 3 / 4 (IN3 / IN4)

	Pin	Belegung	Pin	Belegung
$\left(\bigcirc^5 \bigcirc^4 \bigcirc^3 \bigcirc^2 \bigcirc^1 \right)$	1	+ Sensorspeisung 5 / 10 V	6	+ IN3 Signal
$\underbrace{\bigcirc_9\bigcirc_8\bigcirc_7\bigcirc_6}$	3	+ Transmitter-Speisung 15 / 24 V	8	Bezugsmasse 15 / 24 V / Signal
Blick auf die	5	Bezugsmasse 5 / 10 V	9	+ IN4 Signal
Geräterückseite		•		•

Adapterkabel für burster-Standardanschluss an Hilfskanälen (Sensor 3 / 4)

Adapterkabel Typ A

Adapterkabel Typ B

Optional RS232

Blick auf die Geräterückseite

Pin	Belegung
2	Тх
3	Rx
5	GND

Optional RS485

Blick auf die Geräterückseite

Pin	Belegung
1	- Rx
4	- Tx
6	+ Tx
9	+ Rx

4.2.2 Anschlüsse

ACHTUNG!

Gefahr eines elektrischen Schlages!

Die angeschlossenen externen Steuerstromkreise müssen eine Schutzisolierung haben.

Hinweis:

Alle Kondensatoren müssen der VDE-Standardklasse (Klasse x2) entsprechen und einer Spannung von mindestens 230 V AC standhalten. Die maximale Verlustleistungsfähigkeit des Widerstandes muss mindestens 2 W betragen.

Hinweis:

Die Firma burster präzisionsmesstechnik gmbH & co kg übernimmt in keinem Fall die Haftung für Sachoder Personenschäden, die auf unbefugte Eingriffe, auf unsachgemäße oder den technischen Eigenschaften des Geräts nicht angemessene Bedienung oder Anwendung oder auf den Gebrauch im Widerspruch zu den Vorschriften in der vorliegenden Bedienungsanweisung zurückzuführen sind.

Beim Anschluss des Geräts gilt:

- Verlegen Sie die Eingangsleitungen getrennt von den Leitungen f
 ür die Spannungsversorgung, den Ausg
 änge und den Hauptstromverbindungen.
- Verwenden Sie verdrillte bzw. abgeschirmte Kabel, deren Schirm mindestens an einem Ende geerdet ist.
- > Schalten Sie, an Ausgangsleitungen, die unter Last geschaltet werden (Schütze, Magnetventile, Motoren, Gebläse usw.), ein RC-Glied (Widerstand und Kondensator in Reihe) parallel zur Last.

Damit unterdrücken Sie Störaussendungen.

Schalten Sie, bei induktiver Last, eine Diode vom Typ 1N4007 parallel zur Last.

Eingang IN1 / IN2 DMS-Sensor 4-Leiter

Hinweis:

Die Größe des Kalibrierwiderstandes finden Sie im Prüf- und Kalibrierprotokoll des Sensors.

Eingang IN1 / IN2 TC – Thermopaar

Sie können Thermopaare der Typen J, K, R, S und T anschließen.

Nach einer kundenspezifischen Linearisierung können Sie auch Thermopaare der Typen B, E, N, L, U, G, D und C anschließen.

- > Achten Sie auf die Polarität.
- > Verwenden Sie zur Leitungsverlängerung eine geeignete Kompensationsleitung.

Eingang IN1 / IN2 mit vom Gerät gespeistem 3-Leiter-Transmitter

Der Sensortyp ist abhängig vom gewählten Transmitter.

Eingang IN1 / IN2 mit vom Gerät gespeistem 2-Leiter-Transmitter

Eingang IN1 / IN2 (Strom)

Dieser Eingang ist für ein lineares Gleichstromsignal geeignet.

Blick auf die Geräterückseite

Stromstärke	Innenwiderstand
0/4 mA bis 20 mA	50 Ω

Eingang IN1 / IN2 (Spannung)

Dieser Eingang ist für ein lineares Gleichspannungssignal geeignet.

Blick auf die Geräterückseite

6 **+ IN1 / IN2**

Spannung	Innenwiderstand
±60 mV	>10 MΩ
±100 mV	>10 MΩ
±1,0 V	>2 MΩ
±5,0 V	>2 MΩ
±10,0 V	>2 MΩ

Eingang IN1 / IN2 Potentiometer

Adapterkabel für burster-Standardanschluss an Hilfskanälen (Sensor 3 / 4)

Eingang IN1 / IN2 PT100

Hinweis:

Verwenden Sie nur Anschlussleitungen mit einem angemessenen Querschnitt, d.h. > 1 mm².

Eingänge IN3 / IN4 mit vom Gerät gesp. 3-Leiter-Transmitter

Eingänge IN3 / IN4 mit vom Gerät gesp. 2-Leiter-Transmitter

Eingänge IN3 und IN4 (Strom)

Blick auf die Geräterückseite

Eingänge IN3 und IN4 (Spannung)

Blick auf die Geräterückseite

Eingänge IN3 und IN4 Potentiometer

Blick auf die Geräterückseite

Anschluss des Analogausgangs

Blick auf die Geräterückseite

Sie haben folgende Möglichkeiten:

0 – 10 V, 2 – 10 V, ±10 V, max. 25 mA kurzschlussgeschützt

0 - 20 mA, 4 - 20 mA bei einer maximalen Last von 500 W

Wahl des Typs mittels Konfigurationsparameter.

Digitaleingänge DI1 und DI2

Blick auf die Geräterückseite

Digitaleingänge (PNP): 24 V, maximal 5 mA (Werkseinstellung).

Potentialfreier Kontakt (NPN): maximal 5 mA (Hd1).

Die Digitaleingänge DI1 und DI2 aktivieren Sie mit dem Parameters d. 6.x, im Menü Hr.d.

Weitere Informationen finden Sie im Kapitel 12.3.3: "Digitaleingänge" auf der Seite 113.

Ausgänge OUT1, OUT2, OUT3 und OUT4

Relais: 5 A, 250 V AC / 30 V DC

Digitale Ausgänge

Serielle Schnittstelle RS232

Blick auf die Geräterückseite

Serielle Schnittstelle RS4852-Leiter (Standard)

Serielle Schnittstelle: RS485 4-Leiter

5. Bedienelemente

Alle Bedieneinrichtungen sind auf der Gerätefront zusammengefasst (Schutzart IP54).

Tabelle 2: Benutzeroberfläche

Nr.	Bezeichnung	Funktion		
1	Anzeige PV (Prozesswert Display)	Anzeige des Istwerts, der Menübezeichnung, der Parameterbezeichnung und der Fehlercodes.		
2	Hilfsdisplay	Zeigt den Indexwert für die, auf dem Display PV angezeigte, Prozessgröße an; die Maßeinheit wird bei der Konfiguration festgelegt.		
3	Cursortasten ▲ ▼	Heraufsetzen/Herabsetzen der Parameterwerte bis zum Erreichen des Höchst- bzw. Mindestwerts. Durch ständiges Drücken beschleunigt man das Herauf- / Herabsetzen des angezeigten Werts.		
	Taste [F]	Zum Umschalten zwischen den verschiedenen Menüs und Parametern. Zum Bestätigen des aktuellen Parameterwerts (bzw. des geänderten Parameterwerts) und zum Aufrufen des nächsten Parameters.		
	Taste [PEAK]	Aktivierung maximaler Spitzenwert Eingang IN1 (Auslieferzustand)		Die Funktionen sind nur aktiviert, wenn das Display den Istwert auf
	Taste [CAL RST]Kontrolle der Kalibrierung des DMS Eingang IN1 (Auslieferzustand)		(zur Konfiguration siehe die	
Taste [*]		Tara (Auslieferz	zustand)	Menü Hrd)
	Taste [F]+[*]	Zum Bestätiger geänderten Pa	erts (bzw. des mit den Tasten ▲ ▼ ufen des vorherigen Parameters.	
4	AL1 bis AL4	Zustandsanzeigen der Grenzwerte: ON (leuchtet) OFF (leuchtet nicht)		
5	L1 bis L4	Funktionsanzeigen, zur Konfiguration siehe Parameter LEd. I, LEd.2, LEd.3, LEd.4 im Menü Hr d		
		L1 = ON Anzeige des maximalen Spitzenwerts IN1		
		L2 = ON	Kontrolle der automatische	n Kalibration IN1
		L3 = ON OFF	(DI1 aktiviert) Wiederholun (DI1 deaktiviert)	g Dl1
		L4 = ON OFF	(Dl2 aktiviert) Wiederholun (Dl2 deaktiviert)	g DI2

6. Einschalten

Die optimale Funktion des Geräts ist abhängig von der richtigen Konfiguration und Parametrierung der Regelparameter.

Die Flexibilität und die hohe Leistungsfähigkeit dieser Geräte wird durch Einstellen zahlreicher Parameter erreicht. Diese können entweder direkt mit den Tasten des Bedienfelds oder durch Übertragung einer Konfigurationsdatei mit der Software DigiVision voreingestellt werden. Dazu benötigen Sie die optional erhältliche RS232-Schnittstelle.

Die Software DigiVision erlaubt lediglich die Konfiguration des Digitalanzeigers. Für die Erfassung von Messdaten benötigen Sie die kostenpflichtige Software 9163-P100

6.1 Eigendiagnose

Abbildung 7: Selbsttest

Unmittelbar nach Einschalten führt das Gerät einen Selbsttest durch. Während dieses Tests blinken alle Segmente des Displays und die 7 Leuchtanzeigen.

Durchläuft das Gerät den Selbsttest fehlerfrei, schaltet es in den normalen Betriebszustand (Hauptmenü / Ebene 1).

Stellt es beim Selbsttest einen Fehler fest, gibt es einen Fehlercode aus. Dieser Fehlercode ist zusätzlich im Parameter Err des Menüs InF hinterlegt.

Die Bedeutung der einzelnen Fehlercodes finden Sie in Kapitel: 6.3 "Fehler während des Messbetriebs" auf der Seite 58.

6.2 Messbetrieb

Abbildung 8: PV, Anzeige des Istwerts.

Durch kurzes Drücken der Taste [F] können Sie auf dem Display PV nacheinander die Werte der einzelnen Kanäle und Grenzwerte anzeigen, die den Betrieb des Geräts im Hauptmenü bestimmen.

Mit den Tasten ▲ und ▼ können Sie den ausgewählten Grenzwert auf den gewünschten Wert heraufbzw. herabsetzen.

Halten Sie die Taste [F] für 3 Sekunden gedrückt, erscheint das Hauptmenü.

Umschaltung zwischen Netto- und Bruttowerten mittels der Tastatur oder der digitalen Eingänge. Bei Anzeige des Bruttowerts blinkt der Dezimalpunkt der Einer.

Weitere Informationen zur Bedienung finden Sie im Kapitel: 7 "Grundlegende Bedienung" auf der Seite 59.

6.3 Fehler während des Messbetriebs

Beim Auftreten von Fehlern während des Betriebs zeigt die Anzeige "PV" einen Fehlercode.

Tabelle 3:	Fehlercodes und ihre Bedeutung	

Fehlercode	Bedeutung
Lo	Der Istwert unterschreitet den unteren Skalenwert (Parameter Lם5 im Menü / הP)
HI	Der Istwert überschreitet den oberen Skalenwert (Parameter H , 5 im Menü / ¬P)
Err	Kurzschluss bzw. Werte des Eingangs unter den Mindestwerten (z.B. wegen falsch angeschlossenem Thermoelement). Der Transmitter 4… 20 mA ist defekt oder wird nicht gespeist.
Sbr	Fühlerbruch oder das Eingangssignal liegt über dem oberen Skalenwert.
Ebr	Sensorspeisung fehlt (DMS), Sensor ist defekt oder nicht angeschlossen.
Ebr.Lo	Versorgungsspannung des Sensors fehlt.
Er.rtd	Dritter Leiter des Pt100 unterbrochen oder nicht angeschlossen.
E.CAL.x	Kalibrierungsfehler an Eingang x (x = 14).

Weitere Informationen finden Sie im Kapitel: 15.3 "Problemlösung" auf der Seite 142.

7. Grundlegende Bedienung

7.1 Auf ein bestimmtes Menü zugreifen

> Halten Sie im Hauptmenü die Taste [F] gedrückt.

Auf der Anzeige PV sehen Sie nacheinander die Titel der freigegebenen Menüs.

Welche Menüs freigegeben sind, ist abhängig von einer Brücke auf der CPU-Karte und von der Einstellung der Parametersperre.

Haben Sie das gewünschte Menü erreicht.

> Lassen Sie die Taste [F] los.

Sie befinden sich nun im gewünschten Menü.

7.2 Auf die Parameter des Menüs zugreifen

Befinden Sie sich im richtigen Menü:

> Drücken Sie kurz auf die Taste [F].

Auf diese Weise gehen Sie durch die einzelnen Menüeinträge (Parameter), bis Sie am gewünschten Parameter angelangt sind.

Im Display sehen Sie nun abwechselnd die Parameterbezeichnung und den jeweiligen Wert.

7.3 Parameterwert einstellen

Sobald Sie zu einem bestimmten Parameter gelangt sind, beginnt die Anzeige zu blinken. Abwechselnd sehen Sie die Bezeichnung und den aktuellen Wert des Parameters.

> Halten Sie eine der Tasten ▲ bzw. ▼ gedrückt.

Auf dem Display sehen Sie nun den aktuellen Parameterwert, den Sie entweder höher oder tiefer stellen.

Das Gerät beginnt mit einer niedrigen Schrittweite, z.B. "1". Diese wird automatisch um eine Zehnerpotenz erhöht, sobald zehn Werte durchgelaufen sind. In unserem Beispiel wird aus der Schrittweite "1" zunächst "10", dann "100" usw.

Ist der Parameter wie gewünscht eingestellt:

> Bestätigen Sie ihn mit einem kurzen Druck auf die Taste [F].

Zu einer niedrigen Schrittweite wechseln:

Lassen die Taste ▲ bzw. ▼ los.

Im Display sehen Sie nun abwechselnd die Parameterbezeichnung und den Wert des Parameters.

- > Warten Sie bis die Parameterbezeichnung mindestens einmal angezeigt wurde.
- > Fahren Sie mit dem Einstellen des Wertes wie gewohnt fort.

Nach weiteren zehn Werten schaltet das Gerät wieder zu einer höheren Schrittweite.

7.4 Zum Hauptmenü zurückkehren

> Drücken Sie gleichzeitig die Tasten [F] und [*].

Sie kehren unmittelbar zum Hauptmenü zurück.

7.5 Bedienstruktur

7.5.1 Ebene 1

7.5.2 Hauptmenü

Abbildung 10: Das Hauptmenü

Hinweis:

Mit den Parametern in der Hardwarekonfiguration können Sie Menüparameter ein bzw. ausblenden. Nicht benötigte Parameter und Menüs werden **ausgeblendet**. Wenn die Tasten ▲, ▼ oder [F] nicht innerhalb von 15 s gedrückt werden, kehrt die Anzeige zur Ebene 1 zurück.

8. Informationen über den aktuellen Zustand abrufen

8.1 Softwareversion anzeigen

Wechseln Sie aus dem Hauptmenü in das Menü I nF.

Halten Sie dazu die Taste [F] gedrückt bis im Display die Anzeige I nF erscheint.

> Drücken Sie einmal kurz auf die Taste [F].

Sie befinden sich nun beim Parameter UPd.

Die Anzeige zeigt nun abwechselnd die Parameterbezeichnung "UPd" und die Softwareversion an.

8.2 Gerätecode anzeigen

> Wechseln Sie aus dem Hauptmenü in das Menü I nF.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige I nF erscheint.

> Gehen Sie zum Parameter Lod.

Drücken Sie dazu mehrmals kurz auf die Taste [F], bis im Display die Anzeige Lod erscheint.

Das Gerät zeigt nun abwechselnd die Parameterbezeichnung "Lod" und den Gerätecode.

8.3 Fehlercode für einen bestimmten Eingang anzeigen

> Wechseln Sie aus dem Hauptmenü in das Menü I nF.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige I nF erscheint.

> Gehen Sie zum jeweiligen Parameter Err.

Drücken Sie dazu mehrmals kurz auf die Taste [F], bis im Display die Anzeige Err erscheint.

Im Menü / nF finden Sie unter der Bezeichnung Err / bis Err die Parameter, die die Fehlercodes für die vier Eingänge des Digitalanzeigers enthalten.

Die Fehlercodes für die mathematischen Funktionen Fin.A und Fin.b finden Sie bei den Parametern $E_{rr}5$ und $E_{rr}6$.

Nähere Informationen zu den Funktionen Fin.A und Fin.b finden Sie im Kapitel 12.3.1: "Mathematische Funktionen" auf der Seite 105.

Das Gerät zeigt nun abwechselnd die Parameterbezeichnung "Err" und einen der Fehlercodes aus der folgenden Tabelle.

Fehlercode	Bedeutung
٥	An diesem Eingang gibt es keinen Fehler.
1	Der Istwert unterschreitet den unteren Skalenwert (Parameter Lo5 im Menü / nP).
2	Der Istwert überschreitet den oberen Skalenwert (Parameter H , 5 im Menü / ¬P).
Э	Kurzschluss bzw. Werte des Eingangs unter den Mindestwerten (z.B. wegen falsch angeschlossenem Thermoelement).
	Der Transmitter 4 20 mA ist defekt oder wird nicht gespeist.
ч	Fühlerbruch oder das Eingangssignal liegt über dem oberen Skalenwert.
5	Sensorspeisung fehlt (DMS), der Sensor ist defekt oder nicht angeschlossen.
6	Versorgungsspannung des Sensors fehlt.
٢	Dritter Leiter des Pt100 unterbrochen oder nicht angeschlossen.
8	Kalibrierungsfehler an Eingang x (x = 14).

burster Digitalanzeiger

8.4 Position des Dezimalpunktes anzeigen

> Wechseln Sie aus dem Hauptmenü in das Menü / ¬F.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige I nF erscheint.

> Gehen Sie zum Parameter dP5.5.

Drücken Sie dazu mehrmals kurz auf die Taste [F], bis im Display die Anzeige dP5.5 erscheint.

In diesem Parameter ist die Position des Dezimalpunktes die mathematische Funktion Fin.A hinterlegt.

> Drücken Sie kurz auf die Taste [F].

Sie befinden sich nun im Parameter dP5.6.

Hier ist die Position des Dezimalpunktes für die mathematische Funktion Fin.b hinterlegt.

Nähere Informationen zu den Funktionen Fin.A und Fin.b finden Sie im Kapitel 12.3.1: "Mathematische Funktionen" auf der Seite 105.

8.5 Skalenwerte anzeigen

> Wechseln Sie aus dem Hauptmenü in das Menü I nF.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige I nF erscheint.

> Gehen Sie zum Parameter Lo5.5.

Drücken Sie dazu mehrmals kurz auf die Taste [F], bis im Display die Anzeige Lo5.5erscheint.

Hier finden Sie den unteren Skalenwert für die mathematische Funktion Fin.A.

> Wechseln Sie zum Parameter Lo5.6.

Drücken Sie dazu kurz auf die Taste [F].

Hier finden Sie den unteren Skalenwert für die mathematische Funktion Fin.b.

> Wechseln Sie zum Parameter H 15.5.

Hier finden Sie den oberen Skalenwert für die mathematische Funktion Fin.A.

> Wechseln Sie zum Parameter H 15.6.

Hier finden Sie den oberen Skalenwert für die mathematische Funktion Fin.b.

Nähere Informationen zu den Funktionen Fin.A und Fin.b finden Sie im Kapitel 12.3.1: "Mathematische Funktionen" auf der Seite 105.

^{burster} Digitalanzeiger

Abbildung 11: Das Informationsmenü im Überblick

9. Konfiguration von Eingängen

Mit den Parametern der Menüs für die erweiterte Konfiguration / Parametrierung des Digitalanzeigers 9163 ist die Konfiguration des Geräts bis in die kleinsten Einzelheiten möglich. Damit kann der Digitalanzeiger nahezu jedem Anwendungserfordernis gerecht werden.

WARNUNG!

Warnung vor Sach- und Personenschäden!

Stellen Sie vor der Inbetriebnahme des Geräts sicher, dass alle Parametersätze korrekt sind.

Auf den folgenden Seiten werden die verschiedenen Menüs der Anzeige 9163 nacheinander beschrieben. Für jeden Parameter werden seine Funktion, ggf. der Defaultwert und der Einstellbereich angegeben.

Hinweis:

Beachten Sie beim Parametrieren die Werte in den Tabellen. Bei einigen Parametern müssen Sie, für bestimmte Funktionen, Werte addieren!

9.1 Konfigurieren eines Haupteingangs

Die beiden Haupteingänge des Digitalanzeigers 9163 konfigurieren Sie in den Menüs I nP. I und I nP.2. Beide Menüs sind in ihrem Aufbau und in ihren Einstellungen identisch. Sie beinhalten die Einstellungen für jeweils einen Haupteingang.

> Wechseln Sie, aus dem Hauptmenü, zum jeweiligen Konfigurationsmenü (/ ¬P. / bzw. / ¬P.2).

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige / nP. I bzw. / nP.2 erscheint.

> Drücken Sie einmal kurz auf die Taste [F].

Sie befinden sich nun beim Parameter ŁYP.

> Stellen sie, durch Eingabe der Sensorklasse, den Eingang auf einen bestimmten Sensortyp ein.

Diese Sensortypen sind möglich:

Klasse	Sensortyp	Skalenwert		
0	Eingang deaktiviert			
1	TC J °C	0	/	1000
2	TC J °F	32	/	1832
3	TC K °C	0	/	1300
4	TC K °F	32	/	2372
5	TC R °C	0	/	1750
6	TC R °F	32	/	3182
7	TC S °C	0	/	1750
8	TC S °F	32	/	3182
9	TC T °C	-200	/	400
10	TC T °F	-328	/	752
11	PT100 °C	-200	/	850
12	PT100 °F	328	/	1562
13	Potentiometer ≥100 Ω, Versorgungsspannung 2,5 V	-19999	/	99999
14	DMS-Sensoren mit positiver Polarisierung. Empfindlichkeit: 1,5 bis 4 mV/V	-19999	1	99999
15	DMS-Sensoren mit symmetrischer Polarisierung. Empfindlichkeit: 1,5 bis 4 mV/V	-19999	1	99999
16	60 mV	-19999	/	99999
17	±60 mV	-19999	/	99999
18	100 mV	-19999	/	99999
19	±100 mV	-19999	/	99999
20	1 V	-19999	/	99999
21	±1 V	-19999	/	99999
22	5 V	-19999	/	99999
23	±5 V	-19999	/	99999
24	10 V	-19999	/	99999
25	±10 V	-19999	/	99999
26	0 bis 20 mA / 4 bis 20 mA	-19999	/	99999
27	nicht verwenden!	-19999	/	99999
28	DMS-Sensoren positive Polarisierung kalibriert 40 mV	-19999	/	99999
29	DMS-Sensoren symmetrische Polarisierung kalibriert 40 mV	-19999	/	99999

Zusatzfunktionen:

- +32 für eine sensorspezifische Linearisierung.
- +64 für Thermoelemente mit externem Kompensationselement:

Hinweis:

Die Einstellungen 28 und 29 können Sie verwenden, ohne den Sensor zu kalibrieren. Stellen Sie die erforderlichen Parameter für Offset und Empfindlichkeit ein.

Bei der Einstellung 28 und 29, Versorgungsspannung 10 V beträgt die maximale Empfindlichkeit 4 mV/V.

Sobald Sie die Sensorklasse eingestellt haben:

> Drücken Sie kurz auf die Taste [F].

Das Display zeigt nun den Parameter F IL.

Mit diesem Parameter stellen Sie den Digitalfilter für den jeweiligen Eingang ein.

Der Filter unterstützt einen Bereich zwischen 0,00 und 20,00 Sekunden.

Hinweis:

Der Digitalfilter F IL ist ein Anzeigefilter, d.h., er wirkt sich auf die Anzeige aus.

Hinweis:

Wird der Digitalfilter auf den Wert "0" gesetzt, wird der er deaktiviert.

Nachdem Sie den Digitalfilter eingestellt haben:

> Drücken Sie kurz auf die Taste [F].

Sie sind nun beim Parameter dP5 angelangt.

Dieser Parameter dient zum Einstellen der Position des Dezimalpunktes.

Digitalanzeiger burster

> Stellen Sie die Position des Dezimalpunktes mit den folgenden Codes ein.

Für Thermoelemente sind lediglich die Positionen "0" und "1" verfügbar.

Code	Format	Zusatzfunktionen:	
0	0 0 0 0 0	Handelt es sich um einen linearen Eingang:	
1	0 0 0 0 .0	 +8 deaktiviert die Meldung L und H 	
2	0 0 0 0 0	(nur für lineare Eingänge).	
3	00.000	 +16 deaktiviert die Meldung Ebr (nur bei Sensoren der Typen 0 bis 15 sowie 28, 29) 	
4	0.0000	• +32 für lineare Differenzeingänge (1625)	

Nachdem Sie die Position des Dezimalpunktes für diesen Eingang eingestellt haben:

> Fahren Sie mit dem Einstellen des oberen und unteren Skalenwerts fort.

Drücken Sie dazu die Taste [F].

Das Display zeigt jetzt den Parameter Lo5.

Das ist der untere Skalenwert der Justage.

> Stellen Sie die untere Grenze ein.

Nachdem Sie die untere Grenze eingestellt haben:

- > Drücken Sie kurz auf die Taste [F].
- > Wiederholen Sie die Prozedur für den oberen Skalenwert.

Das Display zeigt den Parameter H 15.

Bestätigen Sie den oberen Skalenwert mit der Taste [F].

Sie sehen nun den Parameter **DF5** auf dem Display.

> Geben Sie den Korrekturoffset für diesen Eingang an.

Der Korrekturoffset kann zwischen -999 und +999 Skaleneinheiten liegen.

> Bestätigen Sie mit der Taste [F].

Wenn Sie den Parameter *LJP* auf einen Sensor der Klasse "28" oder "29" eingestellt haben, können Sie nun die Empfindlichkeit und den Offset angeben.

Andernfalls überspringen Sie diese Punkte.

Sie sind nun beim Parameter **56***DF* (Offset) angelangt (nur für Sensoren der Klassen "28" und "29").

> Stellen Sie nun den Offset ein.

Dieser kann zwischen –9.999 und +9.999 mV liegen.

Sobald Sie das Einstellen beendet haben:

> Bestätigen Sie mit einem kurzen Druck auf die Taste [F].

Zum Einstellen der Empfindlichkeit (nur für Sensoren der Klassen "28" und "29") dient der Parameter **565E**.

> Drücken Sie kurz die Taste [F].

Sie haben die Konfiguration dieses Eingangs beendet und befinden sich wieder im Hauptmenü.

Abbildung 12: Konfiguration eines Haupteinganges, am Beispiel von I nP. I.

9.2 Konfigurieren eines Hilfseingang

Die beiden Hilfseingänge des Digitalanzeigers konfigurieren Sie mit den Menüs / nP.3 und / nP.4. Beide Menüs sind in ihrem Aufbau und in ihren Einstellungen identisch. Sie beinhalten jeweils die Einstellungen für einen Hilfseingang.

> Wechseln Sie, aus dem Hauptmenü, zum jeweiligen Konfigurationsmenü (/ ¬P.3 bzw./ ¬P.4).

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige I nP.J bzw. I nP.Y erscheint.

> Drücken Sie einmal kurz auf die Taste [F].

Sie befinden sich nun im Parameter **LJP**.

Stellen Sie, durch Eingabe einer Sensorklasse, den Eingang auf einen bestimmten Sensortyp ein.
 Diese Sensortypen sind möglich:

Klasse	Sensortyp	Skalenwert		
0	Eingang deaktiviert			
1	0 bis 10 V	-19999 /	99999	
2	0 bis 20 mA / 4 bis 20 mA	-19999 /	99999	
3	nicht verwenden!	-19999 /	99999	
4	Potentiometer	-19999 /	99999	

Zusatzfunktion:

• +32 für sensorspezifische Linearisierung.

Sobald Sie den Sensor eingestellt haben:

> Drücken Sie kurz auf die Taste [F].

Das Display zeigt nun den Parameter F IL.

Mit diesem Parameter stellen Sie den Digitalfilter für den jeweiligen Eingang ein.

Der Filter unterstützt einen Bereich zwischen 0,00 und 20,00 Sekunden.

Hinweis:

Der Digitalfilter F IL ist ein Anzeigefilter, d.h., er wirkt sich auf die Anzeige aus.

Hinweis:

Wird der Digitalfilter auf den Wert "0" gesetzt, wird der er deaktiviert.

Nachdem Sie den Digitalfilter eingestellt haben:

> Drücken Sie auf die Taste [F].

Sie sind nun beim Parameter dP5 angelangt.

Dieser Parameter dient zum Einstellen der Position des Dezimalpunktes.

Stellen Sie die Position mittels eines Codes ein.

Für Thermoelemente sind lediglich die Bereiche "0" und "1" verfügbar.

Code	Format				
0	0 0 0 0 0				
1	0 0 0 0.0				
2	0 0 0.0 0				
3	0 0 . 0 0 0				
4	0.0000				

Zusatzfunktion:

• +8 deaktiviert die Meldung Lo und H ...

Nachdem Sie die Position des Dezimalpunktes für diesen Eingang eingestellt haben:

> Fahren Sie mit dem Einstellen des oberen und unteren Skalenwerts fort.

Drücken Sie dazu die Taste [F].

Das Display zeigt jetzt den Parameter Lo5.

Das ist der untere Skalenwert der Justage.

> Stellen Sie die untere Grenze ein.

Nachdem Sie die untere Grenze eingestellt haben:

> Drücken Sie kurz die Taste [F].

Das Display zeigt den Parameter H .5.

- > Wiederholen Sie die Prozedur für den oberen Skalenwert.
- > Bestätigen Sie den oberen Skalenwert mit der Taste [F].

Sie sehen nun den Parameter **DF5** auf dem Display.

> Geben Sie den Korrekturoffset für diesen Eingang ein.

Der Korrekturoffset kann zwischen -999 und +999 Skaleneinheiten liegen.

> Bestätigen Sie mit der Taste [F].

Sie haben die Konfiguration dieses Eingangs beendet und befinden sich wieder im Hauptmenü.

^{burster} Digitalanzeiger

9.3 Auswahl der Sensorspeisung

Öffnen Sie das Menü Dut.

Halten Sie dazu, im Hauptmenü, die Taste [F] gedrückt, bis im Display die Anzeige Dut erscheint.

> Drücken sie mehrmals kurz auf die Taste [F], bis im Display der Parameter RL5 erscheint.

> Legen Sie die Art der Sensorspeisung fest.

Diese Arten der Sensorspeisung sind möglich:

Code	Sensorspeisung
0	2,5 V für Potentiometer (nur für Eingang IN1)
1	5 V DMS-Sensoren
2	10 V DMS-Sensoren

Der maximale Strom liegt bei 200 mA.

> Bestätigen Sie Ihre Auswahl mit einem kurzen Druck auf die Taste [F].

Damit haben Sie die Konfiguration der Ausgänge beendet. Sie befinden sich nun wieder im Hauptmenü.

9.4 Wahl der Transmitterspeisung 15 V / 24 V

WARNUNG!

Bei angelegter Spannung erhalten Sie einen elektrischen Schlag! Bevor Sie das Gehäuse öffnen, trennen Sie den Digitalanzeiger von der Spannungsversorgung.

ACHTUNG!

Beschädigung durch elektrostatische Spannung! Behandeln Sie die Platinen mit entsprechender Vorsicht.

Die Sensorspeisespannung stellen Sie, per Steckbrücke (Jumper), auf der CPU-Karte ein.

Abbildung 14: Wahl der Sensorspeisespannung 15 V / 24 V

10. Konfiguration von Ausgängen

10.1 Festlegen der Ausgangsparameter

Führen Sie diese Schritte durch:

Öffnen Sie das Menü Dut.

Halten Sie dazu, im Hauptmenü, die Taste [F] gedrückt, bis im Display die Anzeige Dut erscheint.

- > Drücken sie kurz auf die Taste [F].
- > Das Display zeigt nun rL.I.

Mit diesem Parameter legen Sie das Bezugssignal für den Grenzwertausgang 1 fest.

> Geben Sie dazu einen Code ein.

Code	Funktion
0	OFF
1	Grenzwert 1 (GW1)
2	Grenzwert 2 (GW2)
3	Grenzwert 3 (GW3)
5	Wiederholung Logikeingang 1
6	Wiederholung Logikeingang 2
7	Wiederholung Taste bUL . I ([★])

Code	Funktion
8	GW1 oder GW2
9	GW1 oder GW2 oder GW3
10	GW1 und GW2
11	GW1 und GW2 und GW3
16	oder GW3 GW4
17	und GW3 GW4
18	Grenzwert 4 (GW4)

Zusatzfunktion:

- +32 invertiert den jeweiligen Ausgang.
- > Bestätigen Sie den Code mit einem kurzen Druck auf die Taste [F].

Sie gelangen nun zu den Parametern für die Ausgänge 2 bis 4 (Parameter - L.2 bis - L.4).

> Wiederholen Sie die Prozedur und legen Sie die das Bezugssignal auch für diese Ausgänge fest.

Nachdem Sie im Parameter rL. 4 das Bezugssignal für den Grenzwertausgang 4 festgelegt haben, gelangen Sie zum Parameter ESP. An.

10.2 Auswahl des Analogausgangs

Öffnen Sie das Menü Dut.

Halten Sie dazu, im Hauptmenü, die Taste [F] gedrückt, bis im Display die Anzeige Dut erscheint.

> Drücken Sie mehrmals kurz auf die Taste [F] bis im Display der Parameter **LYP.A**n erscheint.

> Legen Sie mit diesem Parameter den Typ des Analogausgangs fest (OUT W).

Diese Einstellungen sind möglich:

Code	Format	Zusatzfunktion:
0	Ausgang deaktiviert	 +8 zum Invertieren.
1	0 bis 10 V	
2	2 bis 10 V	
3	0 bis 20 mA	
4	4 bis 20 mA	
5	±10 V	

> Bestätigen Sie die Art des Ausgangs mit einem kurzen Druck auf die Taste [F].

Das Display zeigt nun den Parameter r .F.An.

> Weisen Sie eine Bezugsgröße zu.

Diese Einstellungen sind möglich:

Code	Bezugsgröße
0	IN1
1	IN2
2	IN3
3	IN4
4	Fin.A (Mathematische Funktion A)
5	Fin.b (Mathematische Funktion b)
12	Über serielle Schnittstelle erfasster Wert
13	Spitzenwert Eingang 1 Maximum
14	Spitzenwert Eingang 1 Minimum
15	Spitze–Spitze Eingang 1
16	Spitzenwert Eingang 2 Maximum
17	Spitzenwert Eingang 2 Minimum
18	Spitze–Spitze Eingang 2
19	GW1 (Grenzwert)
20	GW2 (Grenzwert)
21	GW3 (Grenzwert)

Zusatzfunktionen:

- +32 Analogausgang auf physikalisches Max./Min. wenn Eingang im Zustand High/Low (jenseits der Kalibrierungsgrenzwerte).
- +64 nur für rıF.Rn = 0,1,2,3,4,5: Ausgang auf Minimum, wenn der Eingang im Zustand Err, 5br oder Ebr ist.

> Bestätigen Sie die Bezugsgröße mit einem kurzen Druck auf die Taste [F].

Das Display zeigt nun den Parameter Lo.An.

Mit diesem Parameter legen Sie die Untergrenze der Skala für die Analogausgänge fest.

- > Geben Sie die Untergrenze für die Skala der Analogausgänge ein.
- > Bestätigen Sie mit einem kurzen Druck auf die Taste [F].
- > Legen Sie, mit dem Parameter H ...An die Skalenobergrenze fest.

> Bestätigen Sie mit einem kurzen Druck auf die Taste [F].

Sie befinden sich nun beim letzten Punkt der Konfiguration, der Sensorspeisung (AL5).

Abbildung 15: Konfiguration der Ausgänge

10.3 Feineinstellung des Analogausgangs

Hinweis:

Ab dem Parameter $[A.L_{D}$ können Sie, wenn nötig, die Feineinstellung des Analogausgangs abbrechen. Halten Sie dazu die Tasten $[\star]$ + [F] lange gedrückt. Nach dem Abbruch befinden Sie sich wieder beim Parameter U.CRL.

> Gehen Sie zunächst in das Menü PAS.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige PRS erscheint.

Stellen Sie, mit den Tasten ▲ bzw. ▼, den Wert "99" ein.

Damit ist der Zugriff auf den geschützten Bereich freigegeben.

> Halten Sie die Taste [F] gedrückt, bis die Anzeige U.ERL erscheint.

- > Stellen Sie den Wert "7" ein.
- > Bestätigen Sie diesen Wert mit einem kurzen Druck auf die Taste [F].

Sie befinden sich nun beim Parameter [A.Lo.

- > Stellen Sie den Minimalwert ein.
- > Nutzen Sie zum Einstellen die Tasten \blacktriangle und \blacktriangledown .
- > Bestätigen Sie mit einem kurzen Druck auf die Taste [F].

Das Display zeigt jetzt den Parameter [A.H...

- > Stellen Sie den Maximalwert ein.
- > Nutzen Sie zum Einstellen die Tasten \blacktriangle und \blacktriangledown .
- > Bestätigen Sie mit einem kurzen Druck auf die Taste [F].

Damit haben Sie die Feineinstellung des Analogausgangs beendet.

Sie befinden sich nun wieder im Hauptmenü am Beginn des Menüs U.ERL.

10.4 Grenzwerteinstellung

Hinweis:

Werden gleichzeitig mehrere Grenzwerte ausgegeben, denen eine Zeichenfolge zugeordnet wurde, hat immer der Grenzwert mit der niedrigsten Nummer Vorrang (GW1 = höchste Priorität; GW4 = niedrigste Priorität).

Absolutgrenzwert

Für GW1 inverser absoluter Grenzwert (Unterschreitung) mit positiver Hysterese H= 1, = 1 (*) = 0. Aus, wenn während der Einschaltphase aktiviert.

Für GW2 direkter absoluter Grenzwert (Überschreitung) mit negativer Hysterese Hy 2, AL.2 = 0

Symmetrischer Absolutgrenzwert

Für GW1 absoluter inverser symmetrischer Grenzwert mit Hysterese Hy I, RL. I = 4

Für GW1 absoluter direkter symmetrischer Grenzwert mit Hysterese HJ I, AL. I = 5

Hinweis:

Der Relativalarm bezieht sich auf einen vorherigen Absolutalarm (SP), z.B. AL1 absolut;AL2 = relativ bezogen auf AL1.

Relativgrenzwert bezogen auf SP (vorheriger Absolutgrenzwert)

Relativgrenzwert

Für GW1 relativer inverser Grenzwert mit negativer Hysterese H= 1, AL. 1 = 3

Für GW1 relativer direkter Grenzwert mit negativer Hysterese H9 I, RE. I = 2

* Minimale Hysterese: 2 Skaleneinheiten

Symmetrischer Relativgrenzwert bezogen auf SP (vorheriger Absolutgrenzwert)

Für GW1 relativer inverser symmetrischer Grenzwert mit Hysterese HY I, AL. I = 6

Für GW1 relativer direkter symmetrischer Grenzwert mit Hysterese H= 1, AL. I = 7

Hinweis:

Bei Grenzwerten, die relativ (RL.n = relativ) zu anderen Bezugsgrößen sind (Rr.n), die unterschiedliche Einstellungen des Dezimalpunkts haben, ist die Ansprechschwelle stets auf die Skaleneinheiten bezogen, ohne die Dezimalpunkte zu berücksichtigen. Beispiel: Wenn Rr.n = 0 (bezogen auf IN1) und RL.n = 6 (relativ bezogen auf IN3) und IN1 mit dP = 1, IN3 mit dP = 2 GW1 = 200.0 IN3 = 10.00 d5.5P = 1, ist die Ansprechschwelle des Grenzwerts 300.0

10.4.1 Grenzwertfreigabe

> Gehen Sie zunächst in das Menü PAS.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige PR5 erscheint.

- > Stellen Sie, mit den Tasten ▲ bzw. ▼, den Wert "99" ein.
- > Halten Sie die Taste [F] gedrückt, bis die Anzeige Hrd erscheint.

> Drücken Sie mehrmals kurz auf die Taste [F], bis Sie sich beim Parameter RL.n befinden.

Dieser dient zur Freigabe von Grenzwerten.

> Stellen Sie die Anzahl der freigegebenen Grenzwerte ein.

Sie können maximal vier (4) Grenzwerte freigeben.

Nach der Freigabe der Grenzwerte folgt das Festlegen der Tastenbelegung für das Bedienfeld. Dazu dienen die Parameter **but.** *I* bis **3**.

10.4.2 Grenzwert konfigurieren

Bevor Sie einen Grenzwert konfigurieren können, müssen Sie ihn erst freigeben. Diese Freigabe nehmen Sie im Menü *H*-*d* vor.

> Wechseln Sie, zunächst, aus dem Hauptmenü in das Menü PR5.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige PR5 erscheint.

- Stellen Sie hier mit den Tasten ▲ bzw. ▼ den Wert "99" ein.
- > Halten Sie nun die Taste [F] gedrückt, bis im Display die Anzeige Hrd erscheint.

> Drücken Sie mehrmals kurz auf die Taste [F], bis im Display der Parameter **RL**.n erscheint.

> Stellen Sie, mit den Tasten ▲ bzw. ▼, die Anzahl der freigegebenen Grenzwerte ein.

Sie können bis zu vier Grenzwerte freigeben.

> Bestätigen Sie mit einem Druck auf die Taste [F].

Damit haben Sie eine bestimmte Zahl von Grenzwerten freigegeben (maximal sind vier möglich). Alle weiteren Einstellungen werden Sie im Menü *RLL* vornehmen.

> Gehen Sie nun in das Menü ALL.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige ALL erscheint.

Drücken Sie kurz auf die Taste [F].

Sie sind nun beim Parameter Ar.n ("n" steht für die Nummer des Grenzwertes: GW1, GW2...).

> Geben Sie, per Code, die Bezugsgröße für den jeweiligen Grenzwert an.

Folgende Bezugsgrößen sind möglich:

Code	Bezugsgröße
0	IN1
1	IN2
2	IN3
3	IN4
4	Fin.A (Mathematische Funktion A)
5	Fin.b (Mathematische Funktion b)
12	über serielle Schnittstelle erfasster Wert

Code	Bezugsgröße
13	Spitzenwert Eingang 1 Maximum
14	Spitzenwert Eingang 1 Minimum
15	Spitze - Spitze Eingang 1
16	Spitzenwert Eingang 2 Maximum
17	Spitzenwert Eingang 2 Minimum
18	Spitze - Spitze Eingang 2

Zusatzfunktion:

- +32 nur für GW1 und GW2: Relativer Grenzwert In.3 und In.4 von Digitaleingang (diG.1,2 Codes: 4, 5, 6).
- > Bestätigen Sie die Bezugsgröße mit einem kurzen Druck auf die Taste [F].

Sie befinden sich nun beim Parameter RL.n.

Dieser Parameter dient zu Eingabe des Grenzwerttyps.

> Geben Sie den Grenzwerttyp per Code an.

Bei den Typen kann unterschieden werden nach:

Code	Direkt (Überschreitung) oder invers (Unterschreitung)	Absolut oder relativ zum aktuellen Sollwert	Normaler Grenzwert oder symmetrischer Grenzwert (Fenster)
0	Direkt	Absolut	Normal
1	Invers	Absolut	Normal
2	Direkt	Relativ	Normal
3	Invers	Relativ	Normal
4	Invers	Absolut	Symmetrisch
5	Direkt	Absolut	Symmetrisch
6	Invers	Relativ	Symmetrisch
7	Direkt	Relativ	Symmetrisch

Hinweis:

Der Grenzwert 1 ist nur absolut möglich, da sich ein relativer Grenzwert immer auf einen vorherigen Absolutgrenzwert beziehen muss.

Zusatzfunktion

- > Addieren Sie zum Code des Grenzwerttyps, den zur Zusatzfunktion gehörenden, Wert hinzu.
- +8, während der Einschaltphase deaktiviert, bis zum ersten Grenzwert.
- +16, aktivieren des Grenzwertspeichers.
- +32, Wechsel der Farbe der Anzeige PV bei aktivem Grenzwert.
- +64, der relative Grenzwert ist auf den Eingang IN3 bezogen (ausgenommen Code $\mathbf{Rr} \cdot \mathbf{n} = 2$).
- +128, der relative Grenzwert ist auf den Eingang IN4 bezogen (ausgenommen Code $R_{r,n} = 3$).
- +256, Wechsel der Farbe des Displays PV bei Überschreitung des Grenzwerts (nur bei Grenzwerten mit Verzögerung).
- +512, aktivieren der zugeordneten Zeichenfolge bei aktivem Grenzwert.
- +1024, aktivieren der zugeordneten Zeichenfolge bei Überschreitung des Grenzwerts (nur bei Grenzwerten mit Verzögerung).
- Bestätigen Sie den Grenzwerttyp und die eventuelle Zusatzfunktion mit einem kurzen Druck auf die Taste [F].

Das Display zeigt nun den Parameter Hy.n.

Dieser Parameter dient zum Einstellen der Hysterese des Grenzwerts (±9 999 Skaleneinheiten).

> Geben Sie die Hysterese an und bestätigen Sie diese mit einem kurzen Druck auf die Taste [F].

Als nächstes müssen Sie die Aktivierungszeit für den jeweiligen Grenzwert festlegen. Diese Einstellung werden Sie in zwei Schritten vornehmen.

Sie befinden Sich mittlerweile beim Parameter - A.n., der Eingabe eines Wertes für die Aktivierungszeit.

▶ Geben Sie nun den Wert für die Aktivierungszeit an.

Sie können Zeit in Millisekunden, Sekunden oder Minuten angeben.

- > Bestätigen Sie diesen Wert mit der Taste [F].
- > Legen Sie im Parameter **ht ...** die Einheit für die Aktivierungszeit fest.

Code	Einheit
0	Millisekunde
1	Sekunde
2	Minute

Wenn Sie im Parameter **AL**.n eine Zusatzfunktion mit zugeordneter Zeichenfolge aktiviert haben, stellen Sie nun diese Zeichenfolge ein. Andernfalls überspringen Sie die nächsten Punkte und fahren direkt mit den Einstellungen für den nächsten Grenzwert bzw. mit der Einstellung des unteren Grenzwertes fort.

Hinweis:

Bevor Sie einem Grenzwert eine best. Zeichenfolge zuordnen können, müssen Sie den Zeichensatz aktivieren. Sie aktivieren diesen, indem Sie zum Code des Parameters **AL_n** ("n" ist die Nummer des Grenzwerts, zwischen "1" und "4") im Menü **ALL** den Wert "512" bzw. "1024" addieren. Wurde ein anderer Wert addiert, werden die Parameter zum Einstellen der Zeichenfolge ausgeblendet.

Grundsätzlich können Sie jedem freigegebenen Grenzwert, eine alphanumerische Zeichenfolge aus fünf Zeichen zuordnen. Diese wird auf dem Display PV (Anzeigeebene 1) angezeigt.

Jedes der fünf Zeichen ist mit einem bestimmten Großbuchstaben bezeichnet:

Digitalanzeiger burster

Abbildung 16: Bezeichnung der fünf Zeichen im Display

Diese Bezeichnung finden Sie ebenfalls bei den Parametern 5dA.n, 5db.n, 5dC.n, 5dd.n und 5dE.n im Menü ALL.

Je nach dem, welche Zeichenfolge Sie bei einem Grenzwert ausgeben möchten, müssen Sie diesen Parametern bestimmten Werte geben.

Diese Werte setzen sich aus den Einzelwerten der Anzeige-Segmente zusammen. Der Wert eines Zeichens ist lediglich die Summe der Segmentwerte

Abbildung 17: So kommt der Zeichenwert zustande.

Beispiel:

Um das Zeichen \exists zu erstellen, müssen Sie den entsprechenden Parameter auf den Wert 1+2+4+8+64 = 79 einstellen.

Die Werte für die gebräuchlichsten Zeichen finden Sie in der Tabelle im Anschluss.

Sie befinden sich nun beim Parameter 5dR.n.

> Legen Sie hier das erste Zeichen (Zeichen A) der zugeordneten Zeichenfolge fest.

Tabel	le 4: Werte fi	ir die g	gebräuchlich	sten Zeichen		
Zeichen	Wert		Zeichen	Wert	Zeichen	Wert
٥	63		в	95	1	4
1	6		A	119	1	6
2	91		ь	124	L	56
Э	79		c	88	ū	55
ч	102		C	57	п	84
5	109		Ь	94	٥	92
6	125		E	123	۵	63
٢	7		E	121	Р	115
8	127		F	113	r	80
9	111		6	61	5	109
-	128		Ь	116	E	120
			н	118	U	62

Bestätigen Sie das Zeichen mit einem kurzen Druck auf die Taste [F]. \triangleright

Das Festlegen der Zeichen B bis E funktioniert in der selben Weise, wie beim Zeichen A. Dazu stehen Ihnen die Parameter 5db, 5dE, 5dd und 5dE zur Verfügung.

Nachdem Sie das Zeichen E festgelegt haben, ist die Zuweisung der Zeichen beendet.

Sollten Sie noch weitere Grenzwerte freigegeben haben, die Sie noch nicht konfiguriert haben, befinden Sie sich nun wieder am Parameter Ar.n und können diese Grenzwerte konfigurieren.

Haben Sie bereits alle freigegebenen Grenzwerte konfiguriert, befinden Sie sich jetzt am Parameter Lo.RL, der Festlegung des unteren Grenzwertes.

Stellen Sie den unteren Grenzwert ein.

Dieser Wert muss zwischen -19 999 und 99 999 liegen.

Bestätigen Sie diesen Wert mit einem kurzen Druck auf die Taste [F].

Das Display zeigt nun den Parameter H ... AL.

> Legen Sie hier den oberen Grenzwert fest.

Auch dieser Wert muss zwischen -19 999 und 99 999 liegen.

> Bestätigen Sie mit einem kurzen Druck auf die Taste [F].

Sie sind nun am letzten Punkt der Grenzwertkonfiguration angelangt, dem Parameter FL.

Dieser bestimmt das Ausgangsverhalten bei einem Fühlerbruch (Fehlercode Err, 5br und Ebr).

> Stellen Sie das Verhalten bei Fühlerbruch mit einem Code ein.

Code	Grenzwert 1	Grenzwert 2	Grenzwert 3	Z
0	OFF	OFF	OFF	
1	ON	OFF	OFF	
2	2 OFF		OFF	
3	ON	ON	OFF	
4	OFF	OFF	ON	
5	ON	OFF	ON	
6	OFF	ON	ON	
7	7 ON		ON	

vert Zusatzfunktion:

• +16, um Grenzwert 4 auf "ON" zu stellen

> Bestätigen Sie die Eingabe mit einem kurzen Druck auf die Taste [F].

Damit haben Sie die Konfiguration der Grenzwerte abgeschlossen und befinden sich wieder im Hauptmenü.

Abbildung 18: Konfiguration von Grenzwerten

10.4.3 Grenzwert einstellen

Drücken Sie, im Messbetrieb, mehrmals kurz auf die Taste [F], bis das Hilfsdisplay die Nummer des Grenzwerts zeigt, den Sie einstellen möchten.

> Drücken Sie die Taste ▲ bzw. ▼.

Damit verändern Sie die Einstellung des jeweiligen Grenzwerts.

10.4.4 Wahl des Kontakttyps (Öffner/Schließer)

WARNUNG!

Bei angelegter Spannung erhalten Sie einen elektrischen Schlag!

Bevor Sie das Gehäuse öffnen, trennen Sie den Digitalanzeiger von der Spannungsversorgung.

ACHTUNG!

Beschädigung durch elektrostatische Spannung! Behandeln Sie die Platinen mit entsprechender Vorsicht.

Auf der Lötseite der Netzteil-Karte befinden sich die Brücken (Jumper) zur Wahl des Kontakttyps (Öffner / Schließer) für die Relaisausgänge.

Hinweis:

N01-N04 für den Kontakttyp "Schließer" (Werkseinstellung)

NC01-NC04 für den Kontakttyp "Öffner"

11. Konfiguration der Schnittstellen

11.1 Serielle Schnittstelle konfigurieren

Zur Konfiguration einer seriellen Schnittstelle, für den Datenaustausch, dient das Menü 5Er.

> Wechseln Sie aus dem Hauptmenü ins Menü 5Er.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige 5Er erscheint.

> Drücken einmal kurz auf die Taste [F].

Das Display zeigt nun den Parameter Lod.

Dieser dient zum Einstellen der Geräteadresse. Eine mögliche Adresse muss im Bereich zwischen "0" und "247" liegen.

- > Stellen Sie die gewünschte Adresse ein.
- > Drücken Sie kurz auf die Taste [F].

Das Display zeigt den Parameter bRu.

Hier stellen Sie die Baudrate für die Übertragung ein.

Folgende Baudraten sind möglich:

Code	Baudrate
0	1 200
1	2 400
2	4 800
3	9 600
4	19 200
5	38 400
6	57 600
7	115 200

^{burster} Digitalanzeiger

> Drücken Sie die Taste [F].

Das Display zeigt jetzt den Parameter PAr.

Dieser Parameter dient zum Einstellen der Parität.

Code	Parität
0	keine
1	ungerade
2	gerade

Damit ist die serielle Schnittstelle konfiguriert.

Abbildung 19: Das Menü 5Er dient zur Konfiguration einer seriellen Schnittstelle

11.2 Profibusanbindung (nur für Geräte mit Profibus-Option)

Informationen zum Profibus finden Sie in der gesonderten Profibusanleitung.

12. Konfiguration des Geräts

12.1 Auf den geschützten Bereich zugreifen

Zum geschützten Bereich gehören:

- Mathematische Funktionen
- Grenzwertfreigabe
- Tastenbelegung
- Konfiguration von Digitaleingängen
- Displayeinstellungen
- Linearisieren von Eingängen
- Sensorspezifische Kalibrierung

Um Zugriff auf den geschützten Bereich zu erhalten:

> Gehen Sie in das Menü PAS.

Halten Sie dazu, im Hauptmenü, die Taste [F] gedrückt, bis im Display die Anzeige PR5 erscheint.

Dieses Menü besitzt lediglich einen Parameter.

> Stellen Sie, mit den Tasten ▲ bzw. ▼, den Wert "99" ein.

Nachdem Sie den Wert eingestellt haben, ist die Sperre aufgehoben. Sie bleibt solange aufgehoben, solange Sie sich im geschützten Bereich bewegen.

Für den Zugriff auf Menüs innerhalb des geschützten Bereichs halten Sie, wie gewohnt, Taste [F] gedrückt.

12.2 Parametersperre

WARNUNG!

Bei angelegter Spannung erhalten Sie einen elektrischen Schlag!

Bevor Sie das Gehäuse öffnen, trennen Sie den Digitalanzeiger von der Spannungsversorgung.

ACHTUNG!

Beschädigung durch elektrostatische Spannung! Behandeln Sie die Platinen mit entsprechender Vorsicht.

Auf der Bestückungsseite der CPU-Karte befindet sich die Brücke S9, mit dieser wird Zugriff auf die Menüs des Geräts gesteuert.

Zugriff freigeben:

> Schließen Sie die Brücke S9.

Zugriff sperren:

> Öffnen Sie die Brücke S9.

Beim Durchlauf der Menüs (Taste [F] gedrückt halten), erscheint nach dem Menü Dut, die Anzeige PRS.

Der Zugriff auf die nachfolgenden Menüs ist nur möglich, wenn Sie den Parameter PR5 auf den Wert "99" setzen.

Mit dem Parameter **Pro** können Sie die Anzeige und/oder Bearbeitung bestimmter Parameter aktivieren bzw. deaktivieren. Zu diesen Parametern gehören:

- In Ibis 4
- F .n.A
- F in.b
- AL. I bis 4

Zusätzlich können Sie den Zugriff auf diese Konfigurations-Menüs sperren:

- Haupteingänge (I nP. I, I nP.2)
- Nebeneingänge (I nP.3, I nP.4)
- Grenzwerte (**ALL**)
- Ausgänge (Dut)
- Serielle Schnittstelle (5Er)
- CF6

Außerdem können Sie die Software-Geräteabschaltung (StandBy) sperren und die Tara-Funktion deaktivieren.

> Gehen Sie zunächst in das Menü PAS.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige PR5 erscheint.

- Stellen Sie, mit den Tasten ▲ bzw. ▼, den Wert "99" ein.
- > Halten Sie die Taste [F] gedrückt, bis die Anzeige Pro erscheint.

> Stellen Sie den Parameter Pro auf einen dieser Werte ein:

Code	Anzeige und Bearbeiten dieser Parameter
0	In 1,1 n2,1 n3,1 n4
	Fin.A, Fin.b
	AL. 1, AL.2, AL.3, AL.4
1	In 1,1 n2,1 n3,1 n4
	Fin.A, Fin.b
	RLL, DUE
3	F In.A, F In.b

Zusatzfunktionen

- +4 zum Sperren der Menüs InP. I, InP.2, InP.3, InP.4, ALL und Dut
- +8 zum Sperren des Menüs 5Er und der Schnittstellenkonfiguration
- +16 zum Sperren der Software-Geräteabschaltung (StandBy)
- +32 zum Deaktivieren der Tara-Speicherung

Abbildung 20: Der Zugriff auf das Menü Pro ist durch das Passwort geschützt

12.3 Geräteeinstellungen

12.3.1 Mathematische Funktionen

> Gehen Sie zunächst in das Menü PAS.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige PR5 erscheint.

- > Stellen Sie, mit den Tasten ▲ bzw. ▼, den Wert "99" ein.
- > Halten Sie die Taste [F] gedrückt, bis die Anzeige Hrd erscheint.

> Drücken Sie mehrmals kurz auf die Taste [F], bis Sie sich beim Parameter *F בחם*. *A* befinden.

Dieser Parameter dient zur Auswahl der mathematischen Funktion, die Sie auf die Eingangswerte des Digitalanzeigers anwenden können.

Code	Funktion
0	Funktion deaktiviert
1	Fin.A = $\frac{(C1.A * In1.A)^{C2.A} OPErA (C3.A * In2.A)^{C4.A}}{C5.A}$
2	IN1 + IN2
3	IN1 – IN2
4	IN1 / IN2 (für IN2 sind nur pos. Werte, im Bereich 1 bis 99 999, erlaubt)
5	(für IN1 sind nur pos. Werte, im Bereich 0 bis 99 999, erlaubt)
6	(IN1 + IN2) / 2
7	IN3 x C1.A
8	(IN1 + IN2 + IN3 + IN4) / 4

Wenn Sie die Funktion 0, 2, 3, 4, 5, 6 oder 8 gewählt haben, überspringen Sie die nachfolgenden Punkte und kommen direkt zur Auswahl der zweiten mathematischen Funktion Func.b.

Wenn Sie die Funktion 7 gewählt haben, müssen Sie den Koeffizienten L *I.* (Bereich –9,99 bis 99,99) angeben. Nachdem Sie diesen Wert eingegeben haben, gelangen Sie direkt zur Auswahl der zweiten mathematischen Funktion Functb.

Wenn Sie die Funktion 1 gewählt haben, müssen Sie noch weitere Parameter festlegen, bevor Sie zur zweiten mathematischen Funct b gelangen.

Wenn Sie die Funktion 1 gewählt haben:

Тур 9163

> Legen Sie die Werte für die beiden Variablen I n I.A und I n 2.A fest.

Diese Einstellungen sind möglich:

Code	Variable	Code	Variable
0	= 0	3	IN3
1	IN1	4	IN4
2	IN2	6	Fin.B

- > Bestätigen Sie jeweils mit einem kurzen Druck auf die Taste [F].
- > Das Display zeigt nun den Parameter DPEr.A.

> Sie müssen nun den mathematischen Operator A angeben.

Diese Einstellungen sind möglich:

Code	Operator
0	+
1	-

Code	Operator
2	х
3	/

- > Bestätigen Sie mit der Taste [F].
- > Legen Sie den Koeffizienten [1.A fest.

Dieser Koeffizient muss in einem Bereich zwischen -9,99 und +99,99 liegen.

> Legen Sie als nächstes den Koeffizienten [2.R fest.

Diese Einstellungen sind möglich:

Code	Wert
0	1
1	1/2
2	2

> Legen Sie nun den Koeffizienten []. A fest.

Dieser Koeffizient muss in einem Bereich zwischen -9,99 und 99,99 liegen.

> Legen Sie den Koeffizienten [4.Я fest.

Diese Einstellungen sind möglich:

Code	Wert
0	1
1	1/2
2	2

> Legen Sie zum Schluss den Koeffizienten **[5.**] fest.

Dieser Koeffizient muss in einem Bereich zwischen -9,99 und 99,99 liegen.

Sobald Sie den Koeffizienten **[5.***R* festgelegt haben, ist die Einstellung der Parameter für die mathematische Funktion A beendet.

Beispiel: einfache Differenzmessung

Diese Differenzmessung soll sich auf die Eingänge IN3 und IN4 beziehen.

Wir setzen die Parameter der mathematischen Funktion A wie folgt:

Func.A	=	Fin.A = (C1.A ∗ In1.A) ^{©2} ∧ OPErA (C3.A ∗ In2.A) ^{©4.A} C5.A
In 1.A	=	IN3
R.Sn I	=	IN4
OPEr.A	=	-
C 1.A	=	1
E2.A	=	1
C3.A	=	1
[Ч.А	=	1
[5.A	=	1

Setzen wir die Parameter I n I.A bis [5.A in die gewählte Formel ein, so lautet das Ergebnis:

Func.A =
$$\frac{(1 \times IN3)^{1} - (1 \times IN4)^{1}}{1}$$

Daraus ergibt sich:

Func.A = IN3 - IN4

Sie befinden sich nun am Parameter Func.b.

burster Digitalanzeiger

Dieser Parameter dient zur Auswahl der mathematischen Funktion, die Sie auf die Eingangswerte des Digitalanzeigers anwenden können.

Code	Funktion
0	Funktion deaktiviert
1	$Fin.b = \frac{(C1.b * ln1.b)^{C2.b} \text{ OPErb } (C3.b * ln2.b)^{C4.b}}{C5.b}$
2	IN1 + IN2
3	IN1 – IN2
4	IN1 / IN2 (für IN2 sind nur pos. Werte, im Bereich 1 bis 99 999, erlaubt)
5	(für IN1 sind nur pos. Werte, im Bereich 0 bis 99 999, erlaubt)
6	(IN1 + IN2) / 2
7	IN3 x C1.b
8	(IN1 + IN2 + IN3 + IN4) / 4

Wenn Sie die Funktion 0, 2, 3, 4, 5, 6 oder 8 gewählt haben, überspringen Sie die nachfolgenden Punkte und kommen direkt zur Grenzwertfreigabe (siehe Kapitel 10.4.1 "Grenzwertfreigabe").

Wenn Sie die Funktion 7 gewählt haben, müssen Sie den Koeffizienten **L** 1.b (Bereich –9,99 bis 99,99) angeben. Nachdem Sie diesen Wert eingegeben haben, gelangen Sie direkt zur Grenzwertfreigabe.

Wenn Sie die Funktion 1 gewählt haben, müssen Sie noch weitere Parameter festlegen, bevor Sie zur Grenzwertfreigabe gelangen.

Wenn Sie die Funktion 1 gewählt haben:

> Legen Sie die Werte für die beiden Variablen / n 1.b und / n 2.b fest.

Diese Einstellungen sind möglich:

Code	Variable
0	= 0
1	IN1
2	IN2

Code	Variable
3	IN3
4	IN4
6	Fin.A

- > Bestätigen Sie jeweils mit einem kurzen Druck auf die Taste [F].
- > Das Display zeigt nun den Parameter **DPEr.b**.

Sie müssen nun den mathematischen Operator B angeben.

Diese Einstellungen sind möglich:

Code	Operator
0	+
1	-

Code	Operator		
2	x		
3	/		

- > Bestätigen Sie mit der Taste [F].
- > Legen Sie den Koeffizienten [1.b fest.

Dieser Koeffizient muss in einem Bereich zwischen -9,99 und 99,99 liegen.

> Legen Sie als nächstes den Koeffizienten [2.b fest.

Diese Einstellungen sind möglich:

Code	Wert
0	1
1	1/2
2	2

> Legen Sie nun den Koeffizienten [].b fest.

Dieser Koeffizient muss in einem Bereich zwischen -9,99 und 99,99 liegen.

> Legen Sie den Koeffizienten [4.b fest.

Diese Einstellungen sind möglich:

Code	Wert
0	1
1	1/2
2	2

> Legen Sie zum Schluss den Koeffizienten [5.b fest.

	.
С 5.6	PV

Dieser Koeffizient muss in einem Bereich zwischen –9,99 und 99,99 liegen.

Sobald Sie den Koeffizienten [5.b festgelegt haben, ist die Einstellung der Parameter für die mathematische Funktion B beendet. Sie befinden sich nun am Parameter RL.n. Dieser dient zur Freigabe von Grenzwerten.

Ein Beispiel zur mathematischen Funktion finden Sie auf der Seite 108.

12.3.2 Tastenbelegung

> Gehen Sie zunächst in das Menü PAS.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige PR5 erscheint.

- > Stellen Sie, mit den Tasten ▲ bzw. ▼, den Wert "99" ein.
- > Halten Sie die Taste [F] gedrückt, bis die Anzeige Hrd erscheint.

> Drücken Sie mehrmals kurz auf die Taste [F], bis Sie sich beim Parameter **but**. I befinden.

Auslieferzustand:

but. I steht für die Taste [PEAK].

but.2 steht für die Taste [CAL / RST].

but.3 steht für die Taste [*].

Bei allen drei T	asten haben	Sie diese	Beleaunasn	nöalichkeiten:
	aotorritaborr		Dologangon	noghor montorn.

Code	Funktion	Code	Funktion
0	Gesperrt (keine Funktion)	16	Kalibrierung DMS IN1
2	HOLD IN1	23	Tara nullstellen IN1
3	Grenzwertspeicher löschen	24	Tara nullstellen IN1/Grenzwertspeicher löschen
7	Set / Reset = OUT1 bis 4 (nur bei եսե․ I)	25	Tara nullstellen IN1 /
8	Aktivierung Spitzenwert + (Maximum IN1)		Spitzenwertspeicher löschen IN1
9	Aktivierung Spitzenwert – (Minimum IN1)	26	Tara nullstellen IN1 / Grenzwertspeicher
10	Aktivierung Spitze - Spitze		löschen /Spitzenwertspeicher löschen IN1
	(max. Spitzenwert – min. Spitzenwert) IN1	27	Display HOLD
11	Spitzenwertspeicher löschen IN1	28	FLASH IN1
12	Grenzwertspeicher /	29	Netto/Brutto (Bei Anzeige des Bruttowerts
	Spitzenwertspeicher löschen IN1		blinkt die Anzeige der Einer.
15	Kontrolle der Kalibrierung des DMS IN1 (mit Shunt-Widerstand)		

Zusatzfunktionen

- +32 für einen Bezug auf IN2 (nur für Tabellenwerte, die auf IN1 bezogen sind).
- +64, nur für but.3 möglich, deaktiviert die Funktion "Taste [F] + [★]" ("back menu").

Funktion "HOLD"

Der Eingangswert und die Grenzwertzustände werden während der Dauer der Aktivierung des Digitaleingangs "eingefroren".

Bei aktivem Eingang bewirkt das Zurücksetzen des Grenzwertspeichers das Abfallen aller erregten Relais und die Löschung des Speichers aller Grenzwerte.

Funktion "FLASH"

Der Eingangswert wird gelesen, die Grenzwerte werden "eingefroren"; wenn der Logikeingang aktiv wird, wird der Eingangswert "eingefroren" und die Grenzwerte werden auf Grundlage des zuletzt erfassten Werts aktualisiert.

Sobald Sie die Funktion bestätigt haben, befinden Sie sich beim Parameter **d** (**b**. 1. Dieser dient, zusammen mit dem folgenden Parameter **d** (**b**. 2 zum Festlegen der Funktion der beiden Digitaleingänge.

12.3.3 Digitaleingänge

> Gehen Sie zunächst in das Menü PAS.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige PRS erscheint.

- > Stellen Sie, mit den Tasten ▲ bzw. ▼, den Wert "99" ein.
- > Halten Sie die Taste [F] gedrückt, bis die Anzeige Hrd erscheint.

- > Drücken Sie kurz auf die Taste [F].
- > Sie befinden Sich nun beim Parameter Hd. I.

Dieser dient zum Einstellen von Prozesstyp und Netzfrequenz.

Die Einstellung "Schnell" wird z.B. für Druck- und Durchsatzregelungen verwendet, dagegen verwendet man "Langsam" z.B. für Temperaturregelungen.

Sie haben folgende Auswahlmöglichkeiten:

Code	Prozesstyp	Code	Prozesstyp
0	Schnell (Netzfrequenz 50 Hz)	4	Schnell (Netzfrequenz 60 Hz)
2	Langsam (Netzfrequenz 50 Hz)	6	Langsam (Netzfrequenz 60 Hz)

Zusatzfunktion:

- +8 stellt die Digitaleingänge DI1 und DI2 auf die Betriebsart "NPN" ein.
- > Drücken Sie kurz auf die Taste [F].
- Sie befinden sich nun beim Parameter **d 6. 1**.

Dieser dient, zusammen mit dem folgenden Parameter **d .6.2** zum Festlegen der Funktion der beiden Digitaleingänge.

- Legen Sie die Funktionen der beiden Digitaleingänge fest.

Sie haben diese Auswahl:

Code	Funktion	Code	Funktion
0	Gesperrt (keine Funktion)	16	Kalibrierung DMS IN1
2	HOLD IN1	17	Software-Geräteabschaltung
3	Grenzwertspeicher löschen	18	Sperre Taste [F]
4	Grenzwertschwelle 1 von Eingang IN.3	19	Fernbedienung Taste [F]
5	Grenzwertschwelle 2 von Eingang IN.4	20	Fernbedienung Taste ▲
6	Grenzwertschwelle 1 von Eingang IN.3	21	Fernbedienung Taste ▼
	und Grenzwertschwelle 2 von Eingang IN.4	23	Tara nullstellen IN1
7	Set / Reset = OUT1 bis 4	24	Tara nullstellen IN1 /
8	Aktivierung Spitzenwert + (Maximum IN1)		Grenzwertspeicher löschen
9	Aktivierung Spitzenwert – (Minimum IN1)	25	Tara nullstellen IN1 /
10	Aktivierung Spitze - Spitze		Spitzenwertspeicher löschen IN1
	(max. Spitzenwert – min. Spitzenwert) IN1	26	Tara nullstellen IN1 / Grenzwertspeicher
11	Spitzenwertspeicher löschen IN1		löschen / Spitzenwertspeicher löschen IN1
12	Grenzwertspeicher /	27	Display HOLD IN1
	Spitzenwertspeicher löschen IN1	28	FLASH IN1
15	Kontrolle der Kalibrierung des DMS IN1	29	Netto/Brutto (Wenn aktiv = Brutto)
	(mit Shunt-Widerstand)	30	Wechsel der Farbe des Displays PV.

Zusatzfunktionen

- +32 für einen Bezug auf IN2 (nur für Tabellenwerte, die auf IN1 bezogen sind).
- +64 für einen Eingang mit invertierter Logik.
- +128 zum Zwangssetzen auf den logischen Zustand "1" (Ein).
- > Bestätigen Sie mit der Taste [F].

Das Display zeigt nun den Parameter d5.5P, der zum Konfigurieren des Displays dient.

12.3.4 Displayeinstellungen

> Gehen Sie zunächst in das Menü PAS.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige PR5 erscheint.

- > Stellen Sie, mit den Tasten ▲ bzw. ▼, den Wert "99" ein.
- > Halten Sie die Taste [F] gedrückt, bis die Anzeige Hrd erscheint.

> Drücken Sie mehrmals kurz auf die Taste [F], bis Sie sich beim Parameter **d5.5***P* befinden.

Legen Sie hier die Größe fest, die das Display im Normalbetrieb anzeigt.
 Sie haben folgende Auswahl:

Code	Funktion
1	IN1
2	IN2
3	IN3
4	IN4
8	Analogausgang

Code	Funktion
9	Fin.A
10	Fin.B
32	abwechselnd IN1, IN2 (ca. 1,2 s)
64	abwechselnd IN1, IN2, IN3 (ca. 1,2 s)
128	abwechselnd IN1, IN2, IN3, IN4 (ca. 1,2 s)

Zusatzfunktion:

- +16 für eine grüne Prozessanzeige.
- +512 verhindert das automatische Umschalten der Anzeige
- > Bestätigen Sie die Auswahl mit einem kurzen Druck auf die Taste [F].
- > Legen Sie im Anschluss die physikalischen Größen fest, die im Display F gezeigt werden.

d5.F legt die physikalische Größe für das Display F, in der Anzeige PV, fest.

d5.PU legt die Größe fest, die im Display F, für IN1 angezeigt wird.

5d5.5P legt die Größe fest, die im Display F, für IN2 angezeigt wird.

5d5.F legt die Größe fest, die im Display F, für IN3 angezeigt wird.

5d5.PU legt die Größe fest, die im Display F, für IN4 angezeigt wird.

Bei allen Parametern haben Sie die folgende Auswahl:

Code	Größe		Code	Größe
0			10	nA
1	°C		11	А
2	°F		12	n
3	rH		13	S
4	PA		14	Li
5	PH		15	%
6	bA		16	i.1
7	h		17	i.2
8	nU		18	i.3
9	U		19	i.4
		-		

Nachdem Sie die physikalische Größe für IN4 bestätigt haben, zeigt das Display den Parameter LEd. I.

	,
LEd. I	PV

Stellen Sie mit diesem und den folgenden Parametern (LEd.2, 3 und 4) Die Funktion der LEDs L1-L4 ein.

Hier haben Sie, bei allen vier Parametern, diese Auswahl:

Code	Funktion
0	keine Funktion
3	HOLD IN1
4	HOLD IN2
7	Wiederholung DI1
8	Wiederholung Dl2
9	Fehler (Fühlerbruch)
13	GW1
14	GW2
15	GW3
16	GW1 oder GW2
17	GW1 oder GW2 oder GW3

Code	Funktion
18	GW1 und GW2
19	GW1 und GW2 und GW3
20	Kontrolle der automatischen Kalibrierung IN1
21	Kontrolle der automatischen Kalibrierung IN2
22	Anzeige Spitzenwert + (Maximum IN1)
23	Anzeige Spitzenwert – (Minimum IN1)
24	Anzeige Spitze – Spitze IN1
25	Anzeige Spitzenwert + (Maximum IN2)
26	Anzeige Spitzenwert – (Minimum IN2)
27	Anzeige Spitze – Spitze IN2

Zusatzfunktion:

- +32 aktiviert das Blinken der LED, wenn die Anzeige aktiv ist.
- +64 zum Invertieren des Zustandes der LED.

Mit dem Festlegen der Funktionen für die LEDs ist die Hardwarekonfiguration beendet. Sobald Sie die Funktion bestätigt haben, befinden Sie sich wieder im Hauptmenü.

burster Digitalanzeiger

Abbildung 21: Geräteeinstellungen nehmen Sie im Menü Hrd vor

13. Sensorspezifischer Abgleich

Die Kalibrierung ist abhängig vom Sensor, der für den gewählten Eingang eingestellt wurde.

Allgemeines

Der Digitalanzeiger Typ 9163 kann grundsätzlich nach verschiedenen Methoden skaliert werden:

- Kalibrierung mit physikalischer Größe
- Kalibrierung mit Hilfe von Sensor-Prüfprotokoll-Dateneingabe

In den nachfolgenden Abschnitten sind die unterschiedlichen Kalibrier- und Justagemöglichkeiten näher beschrieben.

13.1 Potentiometer oder Linearsignale

Eine Kalibrierung ist notwendig, um die Zuordnung zwischen den elektrischen Messsignalen der angeschlossenen Sensoren und den darzustellenden Messgrößen festzulegen. Hier handelt es sich um eine Zweipunktkalibrierung. Normalerweise besitzen die Sensoren ein Prüf- und Kalibrierprotokoll, woraus Sie die Größe der elektrischen Signale entnehmen können.

Ein Protokoll kann wie folgt aussehen, die wichtigsten Werte sind gekennzeichnet.

Die Rückführbarkeit der verwendeten Sekundärnormale auf netionale bzw. internationale Normale, entsprechend der Normanreihe DIN EN ISO 9000 ff, ist über Kalibrier- oder Eichscheine gewährteistet. Die verwendeten Normale sind auf Kalibrierlaboratorien rückführbar, die nach ISO/IEC 17025 akkreditiert sind.

Abbildung 22: Prüf- und Kalibrierprotokoll für einen potentiometrischen Wegtaster

Bei der Kalibrierung von Weg- und Längenmesssystemen, wie z.B. potentiometrische Wegsensoren, hat sich die Justage mittels geeichter Endmaße als am einfachsten und praktikabelsten herausgestellt. Der Anschluss von potentiometrischen Drehwinkelsensoren ist ebenfalls möglich.

Um eine Kalibrierung durchzuführen, führen Sie die folgenden Schritte durch:

Hinweis:

Schließen Sie, vor einer Kalibrierung, alle Sensoren an den Digitalanzeiger an. Sollten nicht alle Sensoren, die während des normalen Betriebs mit dem Digitalanzeiger verbunden sind, angeschlossen sein, kommt es zu Abweichungen beim Kalibrieren.

Hinweis:

Ab dem Parameter L_{-} können Sie, wenn nötig, die Kalibrierung abbrechen. Halten Sie dazu die Tasten $[\star] + [F]$ lange gedrückt. Nach dem Abbruch befinden Sie sich wieder beim Parameter U_{-} .

Hinweis:

Potentiometrische Wegsensoren haben i.d.R., am Anfang und am Ende des Messbereichs, elektrische Totbereiche. Dort gibt es, trotz Bewegung der Schubstange, keine Änderung des Messsignals.

- > Schließen Sie die Sensoren an das Gerät an.
- > Gehen Sie zunächst in das Menü PAS.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige PR5 erscheint.

- > Stellen Sie, mit den Tasten ▲ bzw. ▼, den Wert "99" ein.
- > Halten Sie die Taste [F] gedrückt, bis die Anzeige U.ERL erscheint.

> Wählen Sie den betreffenden Eingang aus:

Code	Funktion
1	Eingang IN1
2	Eingang IN2
3	Eingang IN3
4	Eingang IN4

Bestätigen Sie Ihre Auswahl mit einem kurzen Druck auf die Taste [F].
 Sie befinden sich nun beim Parameter [.Lo.

> Stellen Sie den Potentiometer auf den Minimalwert ein.

Das bedeutet, der Schleifer des Potentiometers muss in der Stellung für die Mindestspannung stehen.

lst der Eingangswert symmetrisch, muss der Schleifer in Mittelstellung stehen.

> Bestätigen Sie den Minimalwert mit einem kurzen Druck auf die Taste [F].

Das Display zeigt nun den Parameter [.H ..

> Stellen Sie den Potentiometer auf den Maximalwert ein.

Der Schleifer des Potentiometers muss in der Stellung für die Höchstspannung stehen.

Bestätigen Sie den Maximalwert mit einem kurzen Druck auf die Taste [F].
 Damit haben Sie die Kalibrierung für einen Potentiometer oder ein Linearsignal beendet.
 Sie befinden sich nun wieder im Hauptmenü am Beginn des Menüs U.L.R.L.

13.2 DMS-Sensoren und DMS-Simulatoren

Hinweis:

Wenn Sie zum Kalibrieren einen Kalibrator nutzen, setzten Sie den Parameter **AL5** im Menü **Du**L auf "0". Andernfalls meldet der Digitalanzeiger den Fehler **E**br.

Nachfolgend ist die Zuordnung zwischen dem elektrischen Messsignal des angeschlossenen DMS-Sensors (unterer Kalibrierwert, oberer Kalibrierwert) und der darzustellenden Messgröße (unterer Skalenwert, oberer Skalenwert) festgelegt. Es handelt sich dabei um eine reine Zweipunktkalibrierung.

Abbildung 23: Messgröße und Sensorsignal;

*Die Größe H 15 können Sie während der Kalibrierung verändern.

Es gilt die folgende Zuordnung:

Unterer Skalenwert	\leftrightarrow	Unterer Kalibrierwert
Oberer Skalenwert	\leftrightarrow	Oberer Kalibrierwert

Der untere Kalibrierwert entspricht dem elektrischen Signal des Sensors bei "Belastung" mit dem unteren Skalenwert (meistens der Nullpunkt des Sensors).

Da DMS-Sensoren, aufgrund der Einbausituation (Krafteinleitteile erzeugen bereits eine Vorlast) oder durch Materialalterungen oft zu Nullpunktverschiebungen neigen, stimmt der, unter "Nullpunkt" im Sensorprotokoll angegebene, elektrische Wert nur selten mit dem tatsächlich gemessenen Wert überein. Lernen Sie diesen deshalb stets ein.

Weitere Begriffe:

- Nennkraft \rightarrow Oberer Skalierwert
- Nullsignal \rightarrow Nullpunkt, Nullsignal ohne Einbauteile, unterer Kalibrierwert
- Kennwert \rightarrow Ausgangssignal, Kennwert in Vorzugsmessrichtung, oberer Kalibrierwert

Anschlussart: 4-Leitertechnnik

Abbildung 24: 4-Leitertechnik

Eine Messkette besteht aus einer Reihe von Komponenten, die alle zur Messgenauigkeit der Gesamtanordnung beitragen. Man kann dieser Problematik ausweichen, indem man die typische Problemlösung der 6-Leiterschaltung anwendet oder die 4-Leiterschaltung, als gesamte Messkette, als Einheit kalibriert.

In den meisten Anwendungsfällen reicht die 4-Leiter-Anschlusstechnik allerdings vollkommen aus.

Hinweis:

Der Digitalanzeiger Typ 9163 unterstützt ausschließlich die 4-Leitertechnik.

Für eine Justage mit einem angeschlossenen DMS-Sensor, führen Sie die folgenden Schritte durch:

Hinweis:

Schließen Sie vor der Justage alle Sensoren an den Digitalanzeiger an. Sollten nicht alle Sensoren, die während des normalen Betriebs mit dem Digitalanzeiger verbunden sind, angeschlossen sein, kommt es zu Abweichungen beim Justieren.

Wahlweise können Sie auch einen DMS-Simulator 9405 anschließen, der das Ausgangssignal einer DMS-Vollbrücke nachbilden kann. Damit haben Sie die Möglichkeit den Anzeiger auf einen Sensor abzugleichen, dessen Messbereich Sie nicht mit einer Referenz abdecken können. Weitere Informationen zur Justage mit Hilfe eines DMS-Simulators finden Sie auf der Seite 125.

Hinweis:

Ab dem Parameter **56**. *I* können Sie, wenn nötig, die Justage des Anzeigers abbrechen. Halten Sie dazu die Tasten $[\star] + [F]$ gedrückt. Nach dem Abbruch befinden Sie sich wieder beim Parameter **U.***CRL*.

- > Schließen Sie den Sensor an das Gerät an.
- > Entlasten Sie den Sensor.
- > Gehen Sie zunächst in das Menü PAS.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige PRS erscheint.

- > Stellen Sie, mit den Tasten ▲ bzw. ▼, den Wert "99" ein.
- > Halten Sie die Taste [F] gedrückt, bis die Anzeige U.ERL erscheint.

> Wählen Sie den betreffenden Eingang aus:

Code	Funktion
1	Eingang IN1
2	Eingang IN2
3	Eingang IN3
4	Eingang IN4

> Bestätigen Sie Ihre Auswahl mit einem kurzen Druck auf die Taste [F].

Sie befinden sich nun im Parameter 56. / (vgl. Abbildung 26: auf Seite 137).

Dieser Parameter dient zur Erfassung des Nullsignals am unbelasteten Sensor.

> Drücken Sie kurz auf die Taste [F].

Wenn Sie für diesen Kanal einen DMS-Sensor und den Eingangsbereich 40 mV (Sensorklasse 28 bzw. 29, siehe Kapitel 9.1: "Konfigurieren eines Haupteingangs" auf der Seite 69) eingestellt haben, gelangen Sie direkt zu *U.ERL* zurück.

Wenn Sie für diesen Kanal einen DMS-Sensor mit einer Empfindlichkeit 1,5 bis 4 mV/V (Sensorklasse 14 bzw. 15, siehe Kapitel 9.1: "Konfigurieren eines Haupteingangs" auf der Seite 69) eingestellt haben, beginnt die Anzeige zu blinken.

> Warten Sie, in diesem Fall, einige Sekunden.

Die Anzeige springt zum Parameter 56.2.

Dieser Parameter dient zur Bestimmung des Kennwerts und des Skalenendwertes (z.B. der Nennkraft) des Sensors.

riu –	- unu Kanonerprot	ONU	11	
Test-	and Calibration Certi	ficat	e	
Zug-Druck-Kraftsensor				burster
Tension-Compression load cell				
Тур	/Type	: 8435-	5200	Allers metryet
Serlen-Nr.	/ Serial no.	: 33847	9	
Qualitätsprüfungen	/ Quality inspections			130 300
Nennkraft	/ Nominal Force	From	:0 200 N	BA
Fehlergrenzen (zusammengesetzter Fehler) Summe der Fehler aus Linearitätsabweichung, Relative Umkehrspanne und Reproduzierbarkei	/ ACCUFACY (Combined value) / Combined value for nonlinearity, / repeatability and hysteresis.	f _{comb}	:≤±0,35 %/v.E./	/FS
Kalibriert in	/ Calibration for		: Druckrichtung	/ compression
Maximale Gebrauchskraft	/ Maximum Force, Operating	FG	: 150 % v.E./FS	
Referenzspeisespannung	/ Reference Excitation	Unaf	: 5,0 V	
Ausgangssignal (Kennwert) Ausgangssignal beim Messbereichsendwert bei tariertem Nulipunkt	/ Output signal (Sensitivity) / Output signal at measuring range / with balanced zero.	с	:1,0480 mV/V	
Nullsignal ohne Einbautelle	/ Zero Output / without fitting parts	Sa	: 0,0169 mV/V	
Eingangswiderstand	/ Input Impedance	Re	: 378,65 Ω	
Ausgangswiderstand	/ Output Impedance	Re	: 353,04 Q	
Isolationswiderstand	/ Insulation Resistance	Re:	:≥10 MΩ @45\	1
Kalibriersprung (bei unbekastetem Aufnehmer)	/ Shunt Cal Factor (without any load)	Cstent	:0,8828 mV/V	
Kalibrierwiderstand Ein Kalibrierwiderstand R _{Buent} zwischen -Speisung und -Ausgangszignal, erzeugt bei tariertam Nulipunkt, den angegebenen Kalibriersprung Cauet.	/ Calibration Resistor (Shunt) /A Calibration Resistor Rount connected / across-excitation and -output produce / this Shunt Cal Factor Commt / with balanced Zero Output.	R _{Stevent}	: 100 kΩ	
Validiert nach Prüfanweisung	/Validated according to inspection instr	uction	: 1206	

burster Digitalanzeiger

- Belasten Sie den Sensor jetzt mit einer Referenzgröße (typ. Messbereichsende, z.B. Druck oder Kraft).
- > Stellen Sie, am Display, die jeweilige Referenzgröße mit den Tasten ▲ und ▼ ein.
- > Drücken Sie kurz auf die Taste [F].

Die Anzeige beginnt wieder zu blinken.

> Warten Sie einige Sekunden.

Sie befinden sich nun beim Parameter 56.3.

Dieser Parameter dient zur abschließenden Berechnung des Nullpunkts.

- > Entlasten Sie jetzt den Sensor.
- > Drücken Sie kurz auf die Taste [F].

Damit haben Sie die Kalibrierung des DMS-Sensors beendet.

Sie befinden sich nun wieder im Hauptmenü am Beginn des Menüs U.E.R.L und können weitere Justagen vornehmen.

Für eine Justage mit einem DMS-Simulator 9405, führen Sie die folgenden Schritte durch:

Wenn Sie einen DMS-Simulator 9405 anschließen, können Sie den Anzeiger auf einen Sensor abgleichen, dessen Messbereich Sie nicht mit einer Referenzgröße abdecken können.

Hinweis:

Ab dem Parameter **56**. *I* können Sie, wenn nötig, die Justage des Anzeigers abbrechen. Halten Sie dazu die Tasten $[\star] + [F]$ gedrückt. Nach dem Abbruch befinden Sie sich wieder beim Parameter **U.C.R.**

- > Schließen Sie den DMS-Simulator an das Gerät an.
- > Stellen Sie den DMS-Simulator auf den Wert 0 mV/V ein.

Alternativ können Sie, an dieser Stelle, auch das Nullsignal des betreffenden Sensors benutzen. Schließen Sie dazu den unbelasteten Sensor an den 9163 an.

> Gehen Sie zunächst in das Menü PAS.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige PRS erscheint.

- Stellen Sie, mit den Tasten ▲ bzw. ▼, den Wert "99" ein.
- > Halten Sie die Taste [F] gedrückt, bis die Anzeige U.ERL erscheint.

> Wählen Sie den betreffenden Eingang aus:

Code	Funktion
1	Eingang IN1
2	Eingang IN2
3	Eingang IN3
4	Eingang IN4

> Bestätigen Sie Ihre Auswahl mit einem kurzen Druck auf die Taste [F].

Sie befinden sich nun im Parameter **56**. *I* (vgl. Abbildung 26: auf Seite 137).

Dieser Parameter dient zum Erfassen des am DMS-Simulator eingestellten Nullwertes.

> Drücken Sie kurz auf die Taste [F].

Wenn Sie für diesen Kanal einen DMS-Sensor und den Eingangsbereich 40 mV (Sensorklasse 28 bzw. 29, siehe Kapitel 9.1: "Konfigurieren eines Haupteingangs" auf der Seite 69) eingestellt haben, gelangen Sie direkt zu *U.ERL* zurück.

Wenn Sie für diesen Kanal einen DMS-Sensor mit einer Empfindlichkeit 1,5 bis 4 mV/V (Sensorklasse 14 bzw. 15, siehe Kapitel 9.1: "Konfigurieren eines Haupteingangs" auf der Seite 69) eingestellt haben, beginnt die Anzeige zu blinken.

> Warten Sie, in diesem Fall, einige Sekunden.

Die Anzeige springt zum Parameter 56.2.

Dieser Parameter dient zur Bestimmung des Kennwerts und des Skalenendwertes (z.B. der Nennkraft).

	Prüt	i- und Kalibrierprot	okol		
	Test-	and Calibration Certi	ficate	e	
	Zug-Druck-Kraftsensor			bur	ster
	Tension-Compression load cell				
	Тур	/Type	: 8435-	5200 (Janin	n sartile
	Serien-Nr.	/ Serial no.	: 33847	9	0001
	Qualitätsprüfungen	/ Quality Inspections		150	300
	Nennkraft	/ Nominal Force	From	: 0 200 N	
	Fehlergrenzen (Zusammengesetzter Fehler) Summe der Fehler aus Livearlitikssloweichung, Relative Umkehrspanne und Reproduzierbarkei	/ACCUPBCY (Combined value) /Combined value for nonlinearity, /repeatebility and hysteresis.	f _{comb}	:≤±0,35 %v.E./FS	
	Kalibriert in	/ Calibration for		: Druckrichtung / compressie	an
	Maximale Gebrauchskraft	/ Maximum Force, Operating	Fa	: 150 % v.E./FS	
	Referenzspeisespannung	/ Reference Excitation	Uner	: 5 <u>,0 V</u>	
\langle	Ausgangssignal (Kennwert) Ausgangssignal beim Messbereichsendwert bei tariertem Nullpunkt	/ Output signal (Sensitivity) / Output signal at measuring range / with balanced zero.	C	:1,0480 mV/V	
	Nullsignat ohne Einbautelle	/ Zero Output / without fitting parts	Se	:0,0169 mV/V	
	Eingangswiderstand	/ Input Impediance	Re	: 378,65 Ω	
	Ausgangswiderstand	/ Output Impedance	R.	: 353,04 Ω	
	Isolationswiderstand	/Insulation Resistance	Re	: ≥ 10 MQ @ 45 V	
	Kalibriersprung (bei unbelastetem Aufrehmer)	/ Shunt Cal Factor (without any load)	C _{Sharek}	: 0,8828 mV/V	
	Kalibrierwiderstand En Kalibrierwiderstand R _{auete} zwischen -Spekung und -Ausgangssignal, erzeugt bei tariertem Nullpunkt, den angegebenen Kalibriersprung Cs _{tur} ,	/ Calibration Resistor (Shunt) /A Calibration Resistor Result connected / across-excitation and -output produce / this Shunt Cal Pactor Count / with Islanced Zero Output.	R _{Shamk}	: 100 kΩ	
	Validiert nach Prüfanweisung	/ Validated according to inspection instr	uction	: 1206	

- Wenn Sie, bei der Justage des Nullsignals, den Sensor benutzt haben, müssen Sie jetzt den DMS-Simulator an den 9163 anschließen.
- Stellen den DMS-Simulator auf die, vom Sensorwert gesehen, nächst niedrigere Empfindlichkeit ein.

Wenn Ihr Ausgangssignal (Kennwert), laut Protokoll, z.B. 1,0480 mV/V beträgt, müssen Sie den DMS-Simulator auf 1,0 mV/V einstellen.

> Berechnen Sie diesen Referenzwert nach dieser Formel:

```
Einstellung am Simulator x Nennkraft des Sensors = Referenzwert
Ausgangssignal (Kennwert) des Sensors
```

Beispiel: Berechnung des Referenzwertes, wenn Sie einen DMS-Simulator verwenden

Nennkraft des Sensors: 200 N

Ausgangssignal (Kennwert) des Sensors: 1,0480 mV/V

=

Einstellung am Simulator: 1 mV/V

1 mV/V x 200 N

Beispiel-Referenzwert

1,0480 mV/V

Digitalanzeiger burster

- > Stellen Sie, am Digitalanzeiger, den Referenzwert mit den Tasten ▲ und ▼ ein.
- > Drücken Sie kurz auf die Taste [F].

Die Anzeige beginnt wieder zu blinken.

> Warten Sie einige Sekunden.

Sie befinden sich nun beim Parameter **56.3**.

Dieser Parameter dient zur abschließenden Berechnung des Nullpunkts.

> Stellen Sie den DMS-Simulator auf den Wert 0 mV/V ein.

Wenn Sie, bei der Justage des Nullsignals, einen Sensor benutzt haben, müssen Sie diesen Sensor jetzt wieder anschließen. Der Sensor muss unbelastet sein.

> Drücken Sie kurz auf die Taste [F].

Damit haben Sie die Kalibrierung des DMS-Sensors beendet.

Sie befinden sich nun wieder im Hauptmenü am Beginn des Menüs U.L.AL und können weitere Kalibrierungen vornehmen.

13.3 RTD (PT100)

Dieser passive Messfühler besteht aus Platin. Der Nennwiderstand liegt, bei einer Temperatur von 0 °C, bei 100 Ω . Die mittlere Temperaturänderung zwischen 0°C und 100°C beträgt 0,385 % / °C. Die Temperaturwerte und die entsprechenden Widerstandswerte sind in der DIN EN 60751 festgelegt.

Es gibt die Klassen A und B. Ein Fühler der Klasse A darf bei 100 °C um 0,35 °C und Klasse B um 0,8 °C abweichen.

Die Temperaturmessung erfolgt durch die Widerstandsmessung des Pt 100 Widerstandsthermometers, im Gerät erfolgt dann die Umrechnung in °C.

Um eine Kalibrierung durchzuführen, führen Sie die folgenden Schritte durch:

Hinweis:

Schließen Sie, vor einer Kalibrierung, alle Sensoren an den Digitalanzeiger an. Sollten nicht alle Sensoren, die während des normalen Betriebs mit dem Digitalanzeiger verbunden sind, angeschlossen sein, kommt es zu Abweichungen beim Kalibrieren.

Hinweis:

Ab dem Parameter r L d L a können Sie, wenn nötig, die Feineinstellung des Analogausgangs abbrechen. Halten Sie dazu die Tasten $[\star] + [F]$ lange gedrückt. Nach dem Abbruch befinden Sie sich wieder beim Parameter $U _C \squareL$.

- > Schließen Sie die Sensoren an das Gerät an.
- > Gehen Sie zunächst in das Menü PAS.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige PR5 erscheint.

- Stellen Sie, mit den Tasten ▲ bzw. ▼, den Wert "99" ein.
- > Halten Sie die Taste [F] gedrückt, bis die Anzeige U.ERL erscheint.

> Wählen Sie den betreffenden Eingang aus:

Code	Funktion
1	Eingang IN1
2	Eingang IN2

Bestätigen Sie Ihre Auswahl mit einem kurzen Druck auf die Taste [F].

Sie befinden sich nun beim Parameter **r t d.L o**.

Dieser Parameter steht für den Minimalwiderstand des RTD. Bei einem PT100 liegt dieser bei 18,52 Ω , er kann nicht verändert werden.

> Drücken Sie kurz auf die Taste [F].

Damit befinden Sich beim Parameter r L d.H ..

Dieser Parameter steht für den Maximalwiderstand des RTD. Bei einem PT100 liegt dieser bei 390,48 Ω , er kann nicht verändert werden.

> Drücken Sie kurz auf die Taste [F].

Damit haben Sie die Kalibrierung des RTD-Sensors beendet.

Sie befinden sich nun wieder im Hauptmenü am Beginn des Menüs U.L.AL und können weitere Kalibrierungen vornehmen.

13.4 Thermopaare (TC)

Diese aktiven Messfühler bestehen aus zwei Drähten aus verschiedenen Metallen oder Metalllegierungen, die an einem Ende verschweißt sind.

Bei Erwärmung der Schweißstelle entsteht an den Leitungsenden eine Thermospannung. Ihr Betrag hängt von der Art der verwendeten Metalle und vom Temperaturunterschied zwischen Messstelle und Vergleichsstelle ab.

Heute gebräuchliche Werkstoffe entsprechen den Grundwertreihen der DIN EN 60584 und der DIN 43710.

Um eine Kalibrierung durchzuführen, führen Sie die folgenden Schritte durch:

Hinweis:

Schließen Sie, vor einer Kalibrierung, alle Sensoren an den Digitalanzeiger an. Sollten nicht alle Sensoren, die während des normalen Betriebs mit dem Digitalanzeiger verbunden sind, angeschlossen sein, kommt es zu Abweichungen beim Kalibrieren.

Hinweis:

Ab dem Parameter $L_{c.00}$ können Sie, wenn nötig, die Feineinstellung des Analogausgangs abbrechen. Halten Sie dazu die Tasten [\star] + [F] lange gedrückt. Nach dem Abbruch befinden Sie sich wieder beim Parameter U.C.AL.

- > Schließen Sie die Sensoren an das Gerät an.
- > Gehen Sie zunächst in das Menü PAS.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige PAS erscheint.

> Stellen Sie, mit den Tasten ▲ bzw. ▼, den Wert "99" ein.

Halten Sie die Taste [F] gedrückt, bis die Anzeige U.ERL erscheint.

> Wählen Sie den betreffenden Eingang aus:

Code	Funktion
1	Eingang IN1
2	Eingang IN2

> Bestätigen Sie Ihre Auswahl mit einem kurzen Druck auf die Taste [F].

Das Display zeigt nun den Parameter *Lc.00*.

Dieser Parameter dient dem Digitalanzeiger zur Kalibrierung bei 0 mV.

> Drücken Sie auf kurz auf die Taste [F].

Sie befinden sich nun beim Parameter *Lc*.50.

Dieser Parameter dient dem Digitalanzeiger zur Kalibrierung bei 50 mV.

> Drücken Sie kurz auf die Taste [F].

Der nächste Parameter ist der Parameter EC.ER.

- > Geben Sie die Umgebungstemperatur des Gerätes in °C ein.
- > Drücken Sie kurz auf die Taste [F].

Damit haben Sie die Kalibrierung des Thermopaars (TC) beendet.

Sie befinden sich nun wieder im Hauptmenü am Beginn des Menüs U.L.R.L und können weitere Kalibrierungen vornehmen.

13.5 Eingang linearisieren

Eingänge linearisieren Sie im Menü L m.

> Gehen Sie zunächst in das Menü PAS.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige PR5 erscheint.

- Stellen Sie, mit den Tasten ▲ bzw. ▼, den Wert "99" ein.
- > Halten Sie die Taste [F] gedrückt, bis die Anzeige L in erscheint.

> Drücken Sie einmal kurz auf die Taste [F].

Sie befinden sich nun beim Parameter *L* JP.L, der Eingabe der Linearisierungsart.

Diese Linearisierungsarten können Sie auswählen:

Code	Linearisierungsart
0	Variable Intervalle (maximal 32 Intervalle)
1	Variable Intervalle mit Teach in von IN1 (maximal 32 Intervalle / Steps)
2	Variable Intervalle mit Teach in von IN2 (maximal 32 Intervalle / Steps)
3	Variable Intervalle mit Teach in von IN3 (maximal 32 Intervalle / Steps)
4	Variable Intervalle mit Teach in von IN4 (maximal 32 Intervalle / Steps)
5	Linearisierung mit festen Intervallen (64 Intervalle / Steps)

> Bestätigen Sie die Linearisierungsart mit einem kurzen Druck auf die Taste [F].

Bis zu diesem Punkt ist die Linearisierung eines Eingangs für alle Linearisierungsarten gleich.

Ab dem Punkt "5EP.n" unterscheiden sich die Linearisierungsarten 0 bis 4 von der Linearisierungsart 5.

Sie haben eine der Linearisierungsarten 0 bis 4 gewählt:

Sie befinden sich, nachdem Sie die Linearisierungsart bzw. die Skala für den Temperaturfühler gewählt haben, beim Parameter **5***E***P.n**.

> Stellen Sie die Anzahl der gewünschten Intervalle (Steps) ein.

Sie müssen mindestens einen und maximal 32 Intervalle einstellen.

Nachdem Sie die Anzahl der Intervalle mit einem kurzen Druck der Taste [F] bestätigt haben, befinden Sie sich beim Parameter **5.00**.

> Stellen Sie den unteren Skalenwert ein.

Geben Sie hier den selben Wert ein, den Sie im Parameter Lo5 des jeweiligen Eingangs eingestellt haben. Dieser Wert muss zwischen –19 999 und 99 999 liegen.

Nach dem Bestätigen (Taste [F]) zeigt das Display den Parameter 5.0 IR.

Im Falle von "Teach in" (Einlernen) wird der Eingang erfasst. Sie müssen diesen Wert mit einem Druck auf die Taste [F] bestätigen.

Stellen Sie hier den zugewiesenen bzw. erfassten Eingangswert in 1/10 000 des Linearisierungspunktes ein (Parameter 5.0 /b)

Der Wert des Parameters 5.0 /b muss zwischen 0 und 10 000 liegen.

Wiederholen Sie diese Schritte für die Anzahl der Intervalle, die Sie beim Parameter 5EEP.n angegeben haben.

Sie haben den Linearisierungstyp 5 gewählt:

Sie befinden sich, nachdem Sie die Linearisierungsart bzw. die Skala für den Temperaturfühler gewählt haben, beim Parameter **5.00**.

> Stellen Sie den unteren Skalenwert ein.

Geben Sie hier den selben Wert ein, den Sie im Parameter Lo5 des jeweiligen Eingangs eingestellt haben. Dieser Wert muss zwischen –19 999 und 99 999 liegen.

- > Bestätigen Sie diesen Wert (Taste [F]).
- Geben Sie die Werte f
 ür die Intervalle 1 bis 64 ein.

Sie berechnen diese Werte über die Gleichung:

Wert = (mV Skalenanfang + n∗ (mV Skalenende - mV Skalenanfang)) 64

"n" = Nummer des Intervalls (1-64).

Der jeweilige Wert muss zwischen -19 999 und 99 999 liegen.

Hinweis:

Der Wert **5.64** muss dem Wert entsprechen, den Sie im Parameter **H .5** des jeweiligen Eingangs eingestellt haben.

burster Digitalanzeiger

erscheint nur beim Einlernen und nur bei 5.00 b

Abbildung 25: Linearisierung des Eingangs

13.6 Den Abgleich auf die Werkseinstellung zurücksetzten

> Gehen Sie zunächst in das Menü PR5.

Halten Sie dazu die Taste [F] gedrückt, bis im Display die Anzeige PA5 erscheint.

- > Stellen Sie, mit den Tasten ▲ bzw. ▼, den Wert "99" ein.
- > Halten Sie die Taste [F] gedrückt, bis die Anzeige U.ERL erscheint.

 Addieren Sie zum Code des Eingangs, dessen Kalibrierung Sie zur
ücksetzen m
öchten, 32 hinzu (+32).

Daraus ergeben sich die folgenden Codes zum Zurücksetzten der Kalibrierung:

Code	Funktion
0	-
33	Eingang IN1
34	Eingang IN2
35	Eingang IN3
36	Eingang IN4
39	[Я Ł – Feineinstellung des Analogausgangs

> Drücken Sie kurz auf die Taste [F].

Damit haben Sie die Kalibrierung des jeweiligen Eingangs auf die Werkseinstellung zurückgesetzt.

Sie befinden sich nun wieder im Hauptmenü am Beginn des Menüs U.E.R.L und können weitere Kalibrierungen vornehmen.

burster Digitalanzeiger

Abbildung 26: Kalibrierung verschiedener Sensortypen

14. Geräte Aktivierung / Deaktivierung per Software (StandBy)

Bei der Standardauslieferung ist die EIN / AUS-Funktion freigegeben.

Diese Funktion können Sie einem Digitaleingang zuordnen.

14.1 Ausschalten (Deaktivieren / StandBy)

> Drücken Sie gleichzeitig die Tasten [F] und ▲, länger als 5 Sekunden.

Der 9163 versetzt sich nun in den Zustand AUS.

Während dieser Phase wird die Netzversorgung aufrechterhalten und die untere Anzeige (PV) deaktiviert, wobei die Anzeige "OFF" eingeschaltet bleibt.

Alle Ausgänge (Grenzwertausgänge sowie Regelausgänge) nehmen den Zustand AUS an (Logikausgänge auf "0", Relais abgefallen).

Alle Gerätefunktionen, mit Ausnahme der Istwerterfassung und -darstellung sowie der Einschaltfunktion, sind deaktiviert.

14.2 Einschalten (Aktivieren)

> Drücken Sie die Taste [F], länger als 5 Sekunden.

Der 9163 wechselt vom Zustand AUS in den Zustand EIN.

14.3 Die EIN / AUS-Funktion komplett deaktivieren

Solange Sie die EIN / AUS-Funktion komplett deaktiviert haben, können Sie das Gerät nicht in den StandBy-Modus versetzten.

Addieren Sie zu dem Wert des Parameters Pro (siehe Kapitel 12.2: "Parametersperre" auf der Seite 102) 16 dazu (Pro + 16).

Wurde während der Ausschaltphase die Stromversorgung unterbrochen, kehrt der 9163 beim Wiedereinschalten der Stromversorgung in den Zustand "AUS" zurück.

15. Wartung

WARNUNG!

Bei angelegter Spannung erhalten Sie einen elektrischen Schlag.

Bevor Sie das Gehäuse öffnen, trennen Sie den Digitalanzeiger von der Spannungsversorgung.

Wenn das Gerät nach den Anweisungen und Empfehlungen der vorliegenden Bedienungsanleitung installiert und richtig konfiguriert ist, arbeitet es ordnungsgemäß. Besondere Wartungseingriffe sind dann, abgesehen von der normalen Reinigung der Bedienfront und ggf. der internen Komponenten, nicht erforderlich.

Stellen Sie in jedem Fall vor dem Öffnen des Gehäuses sicher, dass die Spannungsversorgung am Gerät unterbrochen ist.

Für den Zugriff auf die internen Komponenten (z.B. für die Reinigung oder für die Kontrolle der Brücken) müssen Sie lediglich die Befestigungsschraube auf der Bedienfront herausschrauben und das Gerät herausziehen. Ein abklemmen der Kabel ist nicht notwendig.

Das Gerät verfügt über keinen Ein-Aus-Schalter.

15.1 Reinigung

ACHTUNG!

Die Bedienfront des Digitalanzeigers wird beschädigt.

Verwenden Sie niemals Lösungsmittel auf Kohlenwasserstoffbasis (z.B. Benzin etc.)

Zum Reinigen der Bedienfront und des Gehäuses ausschließlich ein mit Wasser oder Alkohol befeuchtetes Tuch verwenden.

Zum Entfernen des Staubs auf den Leiterplatten keine Druckluft, sondern einen sauberen Pinsel mit weichen Borsten verwenden.

15.2 Reparatur

Reparaturen dürfen nur von burster autorisiertem Fachpersonal ausgeführt werden.

Werden Reparaturen oder Änderungen an der Hardware von unbefugten Personen vorgenommen, verfällt die Garantie mit sofortiger Wirkung.

Auf der Bestückungsseite der CPU-Karte befindet sich die Brücke S9, die, wenn sie eingesetzt ist, den Zugriff auf die Menüs des Geräts freigibt.

15.3 Problemlösung

	Tabelle 5:	Symptome	und ihre	Ursache
--	------------	----------	----------	---------

Symptom	Ursache und Abhilfe
Das Display und die LEDs des Geräts schalten sich nicht ein	Das Gerät wird nicht richtig mit Strom versorgt. Kontrollieren Sie, ob an den Klemmen 10-11 die Versorgungsspannung anliegt. Stellen Sie Sicher, dass die Versorgungsspannung den Angaben des Bestellcodes entspricht:
	9163-V0xxxx: 100 bis 240 V AC/DC
	9163-V1xxxx: 20 bis 27 V AC/DC
Die auf dem Display angezeigten Zeichen sind unvollständig oder unleserlich	Möglicherweise ist ein Segment (oder mehrere) des Displays defekt. Schalten Sie das Gerät aus- und wieder ein, um zu prüfen, ob alle Segmente funktionieren. Beim Einschalten wird ein Eigendiagnose-Test ausgeführt, bei dem alle Segmente blinken (Anzeige des Werts 88888). Wenn eines oder mehrere Segmente nicht blinken, wenden Sie sich an den burster-Kundendienst.
Wenn man die Taste [F] gedrückt hält, erscheint keines der Konfigurationsmenüs	Wenn das Problem bei der ersten Installation auftritt, sieht die Hardware-Konfiguration des Geräts wahrscheinlich nicht die Möglichkeit der Änderung der voreingestellten Parameter vor, mit Ausnahme des Sollwerts und der Grenzwerte auf Anzeigeebene 1. (Der Zugriff auf die Änderung der Parameter wird mit der Brücke S9 auf der CPU-Karte freigegeben).
Wenn man die Taste [F] gedrückt hält, erscheinen nicht alle Parameter oder Konfigurationsmenüs	Der Zugriff auf einige Menüs und/oder Parameter ist durch ein Passwort PA5 und einen Schutzcode Pr b geschützt. Für die Eingabe des Passworts und des Schutzcodes siehe Kapitel 12 "Konfiguration": auf der Seite 101.
Das PV Display zeigt anstelle des Istwerts eine der folgenden Meldungen an: LO - HI - 5br - Err - Ebr Ebr Lo - Er.rtd	In den ersten vier Fällen wurde ein Fehler beim Eingangsignal festgestellt (für Einzelheiten siehe Kapitel 3). <i>Err</i> : Im Falle eines Fühlers Pt100: Der Eingang hat einen Kurzschluss. Wenn das Thermoelement einen Kurzschluss hat, zeigt die Anzeige PV die (eingegebene) Umgebungstemperatur des Gerätes, anstelle des Istwerts, an. Im Falle eines Eingangssignals 420mA: Der Transmitter ist defekt oder wird nicht gespeist. <i>Ebr</i> : Der DMS-Sensor ist defekt oder wird nicht gespeist. <i>Ebr</i> : Lo: Keine Spannung für Sensorspeisung. <i>Errchd</i> : Dritter Leiter des Fühlers PT100 unterbrochen oder nicht
	angeschlossen.

16. Technische Daten

Lediglich Werte, Funktionen und Bereiche mit einer relativ oder absolut gekennzeichneten Genauigkeit, bzw. mit spezifizierten Grenzen, werden garantiert.

Tabelle 6:	Die technischen Daten des Digitalanzeigers
	2.0 10 0

Display	1 x 5 stellig, zweifarbig rot/grün, Ziffernhöhe 13mm 1 x 2 stellig, rot, Ziffernhöhe 7mm 14 x rote LEDs
Tasten	6 mechanische Tasten (Peak, CAL/RST, *, AUF, AB, F)
Genauigkeit	0.1 % vom Endwert ±1 Skaleneinheit bei einer Umgebungstemperatur von 25 °C
Temperaturdrift	< 150 ppm/°C v.EW. der jeweiligen Eingänge / Spannung und DMS
Haupteingang/Haupteingänge IN1, IN2	DMS-Sensoren: 350 Ω , Empfindlichkeit 1,54 mV/V, mit Sensorspeisung 5/10 V DC ±5% Potentiometer: \geq 100 Ω , Ri > 10 M Ω bei 2,5 V DC DC linear: \pm 60mV, \pm 100mV, \pm 1V, \pm 5V, \pm 10V, Ri > 10M Ω 0/420 mA, Ri = 50 Ω TC, RTD Abtastrate: 2 msec
Typ TC (Thermoelemente) (ITS90)	J, K, R, S, T (IEC 584-1, CEI EN 60584-1,60584-2) Kundenspezifische Linearisierung möglich (64 Linearisierungsschritte
Kompensationsfehler	0,1° / °C
Typ RTD (Widerstandsthermometer) (ITS90)	Pt100 (DIN43760),
Max. Leitungswiderstand für RTD	20 Ω
Typ PTC / Typ NTC	990 Ω, 25°C / 1 KΩ, 25 °C
Sicherheit	Kurzschluss- und Fühlerbrucherkennung, Ausfall Sensorspeisung, LBA Grenzwert
Hilfseingänge IN3, IN4	Potentiometer: 110 k Ω , bei 10 Vdc DC Linearsignale: 10 V, Ri > 2 M Ω 0/420 mA, Ri = 50 Ω Abtastrate: 10 msec
Lineare Skalenwerte	-19 99999 999, Dezimalpunkt einstellbar
Grenzwertausgänge mit Relais OUT 1, OUT 2, OUT 3, OUT 4	NO (NC) 5A, 250 V / 30 V DC
Grenzwertausgänge mit Transistor	24 Vdc, > 18 V á 20 mA

OUT 1, OUT 2, OUT 3, OUT 4	Ru = 390 Ω
Digitaleingänge DI1, DI2	lsolationsspannung 1500 V, Abtastrate 60 ms ,24 V DC, 5 mA (PNP) oder von potentialfreiem Kontakt (NPN) max. 5 mA Wahl PNP/NPN mittels Konfigurationsparameter
Typ des Analogausgangs OUT W	Typ analog, Auflösung besser als 0,03 %, Isolationsspannung 1500 V, Aktualisierung alle 2 ms, synchron mit Abtastung der Größen IN1 und IN2 0/210 V, ±10 V max. 25 mA, Kurzschlussschutz 0/420 mA, max. Last 500 Ω
Obere Stellgradbegrenzung	-100.0 100.0 %
Ausschalt-Funktion	Die lstwert-Anzeige bleibt eingeschaltet
Konfigurierbare Grenzwerte	Maximal 4 Grenzwerte können einem Ausgang zugeordnet und wie folgt konfiguriert werden: Höchstwert, Mindestwert, symmetrische Werte, Absolut-/Relativwerte, LBA für GW1, GW2, Berechnung alle 2 ms, synchron mit Abfrage der Größen IN1 und IN2. Bei GW3, GW4. Berechnung alle 24 ms in Abhängigkeit von der Anzahl Grenzwerte
Grenzwertsonderfunktionen	Deaktivierung in der Einschaltphase, Grenzwertspeicher, Rücksetzen über Tastatur und/oder Kontakt
Sensorspeisung	5 V DC, 10 V DC für DMS-Sensoren , max. 200 mA 1, 2 V DC für Potentiometer ≥ 100 Ω
Transmitterspeisung	24 V DC ±5 %, max. 200 mA
Serielle Schnittstelle	RS232, RS485 Isolationsspannung 1500 V
Baudrate	1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 bit/s
Protokoll	MODBUS RTU
Spannungsversorgung (Weitbereichsschaltnetzteil)	(standard) 100240 V AC/DC ±10 % (optional) 2027 V AC/DC ±10 % 50/60 Hz, max. 20 VA Schutz durch interne Sicherung; nicht zugänglich für den Benutzer
Schutzart der Bedienfront	IP54
Betriebs-/Lagertemperatur	050 °C/-2070 °C
Relative Feuchte	2085 % nicht kondensierend
Betriebsumgebungsbedingungen	Gebrauch in geschlossenen Räumen, Höhenlage bis 2000 m
Einbau	Schalttafeleinbau, von vorn herausnehmbar
Installationsvorschriften	Installationskategorie II, Verschmutzungsgrad 2, Schutzisoliert
Gewicht	450 g
17. Zuberhörteile und Optionen

Prozesswert-Anzeiger Typ 9163-V 📮 📮 📮 📮
Standard: 0
Gehäuse und Hilfsenergie Einbaugehäuse 100 - 240 V AC — 0 Einbaugehäuse 20 - 27 V AC/V DC — 1 Tischgehäuse 100 - 240 V AC — 3
Analogausgangsspannung 0 ohne 0 0 - 10 V 1 0 - 20 mA 2 4 - 20 mA 3 ± 10 V 4
Schnittstelle 0 ohne 0 RS232 1 RS485 2 Profibus ¹⁾ 3 USB ²⁾ 4
Grenzwertausgänge 4 x Relais0 4 x Transistor (open e. p-schaltend)1
Variante 1-Kanal — 0 4-Kanal bis zu 2 x DMS bzw. 4 x Prozess — 1

¹⁾ kein Analogausgang und kein Tischgehäuse möglich ²⁾ nur im Tischgehäuse möglich

Adapterkabel und Software finden Sie auf der nächsten Seite

Digitalanzeiger burster

Zuberhörteile für Sensormaster 9163-V3xxxx	Bestellbezeichnung
Adapterkabel von Sensorbuchse 1 oder 2 zu DMS-Sensoren mit 5 V DC oder 10 V DC Speisespannung mit montiertem Stecker 9900-V209 und zu potentiometrischen Wegsensoren mit 5 V DC Speisespannung mit montiertem Stecker 9900-V209.	Тур 99209-609А-0090002
Adapterkabel von Sensorbuchse 1 oder 2 zu Transmitter mit 15 V DC oder 24V DC Speisespannung und Sensoren mit montiertem Stecker 9900-V209.	Тур 99209-609В-0090002
Adapterkabel von Sensorbuchse 3/4 zu Transmitter mit 10 V DC oder Potentiometrischen Wegsensoren mit 5V DC Speisespannung und montiertem Stecker 9900-V209 und Sensoranschlusskabel mit 99209-XXXX	Тур 99208-609В-0090002
Adapterkabel von Sensorbuchse 3/4 zu Transmitter mit 15 V DC oder 24 V DC Speisespannung und montiertem Stecker 9900-V209.	Тур 99208-609А-0090002
Software	
Komfortable Konfigurations- und Auswertesoftware DigiVision für Gerätereihe 9163	Тур 9163-Р100

^{burster} Digitalanzeiger

18. Anhang

18.1 Menüeinträge

Tabelle 7: Ebene 1

Anzeige	Standardwert	KONF	MOD-Bus	Beschreibung
PU / SU / F	-		PV LSW: 530 PV MSW: 531	
l n. l			LSW: 536 MSW: 537	Haupteingang IN1
1 n.2			LSW. 538 MSW: 539	Haupteingang IN2
I n.3			LSW: 540 MSW: 541	Hilfseingang IN3
l n.4			LSW: 542 MSW: 543	Hilfseingang IN4
F in A			LSW: 544 MSW: 545	Ergebnis mathematische Funktion A
F m.b			LSW: 546 MSW: 547	Ergebnis mathematische Funktion b
AL.1	4 000		LSW: 554 MSW: 555	Grenzwert 1
AL .2	9 000		LSW: 556 MSW: 557	Grenzwert 2
AL .3	14 000		LSW: 558 MSW: 559	Grenzwert 3
AL.4	19 000		LSW: 560 MSW: 561	Grenzwert 4

Tabelle 8: Menül nF

Anzeige	Standardwert	KONF	MOD-Bus	Beschreibung
UPa	ab 1.33		581	Softwareversion
Cod	1		693	Gerätecode
Err.l	0		582	Fehlercode für IN1
Err.2	0		583	Fehlercode für IN2
Err.3	0		584	Fehlercode für IN3
Err.4	0		585	Fehlercode für IN4
Err.5	-		1333	Fehlercode für F .n.A
Err.6	-		1334	Fehlercode für F .n.ь

Digitalanzeiger burster

Anzeige	Standardwert	KONF	MOD-Bus	Beschreibung
dPS.S	-		1335	Position des Dezimalpunkts F
dPS.6	-		1336	es Dezimalpunkts Fb
Lo5.5	-		LSW: 1337 MSW: 1338	Unterer Skalenwert F חי F (Nur Lesen)
Lo5.6	-		LSW: 1339 MSW: 1340	Unterer Skalenwert F הי.b (Nur Lesen)
H 15.5	-		LSW: 1341 MSW: 1342	Oberer Skalenwert F חי א (Nur Lesen)
H 15.6	-		LSW: 1343 MSW: 1344	Oberer Skalenwert F ח.ה. (Nur Lesen)

Tabelle 9: Menü 5Er

Anzeige	Standardwert	KONF	MOD-Bus	Beschreibung
Cod	1		693	Gerätecode
ьЯц	4		694	Baudrate serieller Datenaustausch
PAr	0		695	Parität serieller Datenaustausch

Tabelle 10: Menül nP. l

Anzeige	Standardwert	KONF	MOD-Bus	Beschreibung
ESP.1	15		696	Sensor- oder Signaltyp für Eingang IN1
FLE.I	0,01		967	Digitalfilter Eingang IN1
dP5.1	20		698	Position Dezimalpunkt für IN1
Lo5.1	-19 999		LSW: 699 MSW: 700	Unterer Skalenwert Eingang IN1
HI 5.1	20 000		LSW: 701 MSW: 702	Oberer Skalenwert Eingang IN1
0F5.1	0		703	Offset Eingang IN1
560F.I	0,000		704	Offset Eingang IN1, kalibriert mit Endwert 40mV
565E.1	3,000		705	Empfindlichkeit Eingang IN1, kalibriert mit Endwert 40 mV

Tabelle 11: Menül nP.2

Anzeige	Standardwert	KONF	MOD-Bus	Beschreibung
ESP.5	15		706	Sensor- oder Signaltyp für Eingang IN2
FLE.2	0,01		707	Digitalfilter Eingang IN2
dP5.2	0		708	Position Dezimalpunkt für IN2
Lo5.2	-3 000		LSW: 709 MSW: 710	Unterer Skalenwert Eingang IN2
HI 5.2	3 000		LSW: 711 MSW: 712	Oberer Skalenwert Eingang IN2
OF5.2	0		713	Offset Eingang IN2
560F.2	0,000		714	Offset Eingang IN2 kalibriert mit Endwert 40mV
565E.2	4,000		715	Empfindlichkeit Eingang IN2, kalibriert mit Endwert 40mV

Tabelle 12: Menül nP.3

Anzeige	Standardwert	KONF	MOD-Bus	Beschreibung
LYP.3	1		716	Sensor-oder Signaltyp für Eingang IN3
FLE.3	0,02		717	Digitalfilter Eingang IN3
dPS.3	3		718	Position Dezimalpunkt für IN3
Lo5.3	0,00		LSW: 719 MSW: 720	Unterer Skalenwert Eingang IN3
HI 5.3	100,00		LSW: 721 MSW: 722	Oberer Skalenwert Eingang IN3
OFS.3	0,00		723	Offset Eingang IN3

Tabelle 13: Menül nP.4

Anzeige	Standardwert	KONF	MOD-Bus	Beschreibung
LYP.4	2		724	Sensor-oder Signaltyp für Eingang IN4
FLE.4	0,02		725	Digitalfilter Eingang IN4
dPS.4	3		726	Position Dezimalpunkt für IN4
Lo5.4	0,0		LSW: 727 MSW: 728	Unterer Skalenwert Eingang IN4
HI 5.4	2 000,0		LSW: 729 MSW: 730	Oberer Skalenwert Eingang IN4
OF5.4	0,0		731	Offset Eingang IN4

Tabelle 14: Menü ALL

Anzeige	Standardwert	KONF	MOD-Bus	Beschreibung
Ar.l	0		732	Bezug Grenzwert 1
AL.I	0		733	Typ Grenzwert 1
ну. I	-1		734	Hysterese Grenzwert 1
rA.1	0		735	Aktivierungszeit Grenzwert 1
ЬЕ.1	0		736	Zeitbasis für Aktivierungszeit Grenzwert 1
SdA. I	0		1283	Zeichen A für Zeichenfolge Grenzwert 1
5d6. I	0		1284	Zeichen B für Zeichenfolge Grenzwert 1
5dC. I	0		1285	Zeichen C für Zeichenfolge Grenzwert 1
588.1	0		1286	Zeichen D für Zeichenfolge Grenzwert 1
5dE.1	0		1287	Zeichen E für Zeichenfolge Grenzwert 1
Ar.2	0		737	Bezug Grenzwert 2
AF '5	0		738	Typ Grenzwert 2
ну.2	-1		739	Hysterese Grenzwert 2
r A.2	0		740	Aktivierungszeit Grenzwert 2
ьғ.2	0		741	Zeitbasis für Aktivierungszeit Grenzwert 2
5dA.2	0		1288	Zeichen A für Zeichenfolge Grenzwert 2
5d6.2	0		1289	Zeichen B für Zeichenfolge Grenzwert 2
5dC.2	0		1290	Zeichen C für Zeichenfolge Grenzwert 2
544.2	0		1291	Zeichen D für Zeichenfolge Grenzwert 2
5dE.2	0		1292	Zeichen E für Zeichenfolge Grenzwert 2
Ar.3	0		742	Bezug Grenzwert 3
AF.3	0		743	Typ Grenzwert 3
ну.Э	-1		744	Hysterese Grenzwert 3
rA.3	0		745	Aktivierungszeit Grenzwert 3
ье.Э	0		746	Zeitbasis für Aktivierungszeit Grenzwert 3
SJA.3	0		1293	Zeichen A für Zeichenfolge Grenzwert 3
5d6.3	0		1294	Zeichen B für Zeichenfolge Grenzwert 3
5dC.3	0		1295	Zeichen C für Zeichenfolge Grenzwert 3

Typ 9163

Anzeige	Standardwert	KONF	MOD-Bus	Beschreibung
566.3	0		1296	Zeichen D für Zeichenfolge Grenzwert 3
5dE.3	0		1297	Zeichen E für Zeichenfolge Grenzwert 3
Ar.4	0		747	Bezug Grenzwert 4
AF.A	32		748	Typ Grenzwert 4
ну.ч	-1		749	Hysterese Grenzwert 4
r A.4	0		750	Aktivierungszeit Grenzwert 4
ье.ч	0		751	Zeitbasis für Aktivierungszeit Grenzwert 4
SdA.4	0		1298	Zeichen A für Zeichenfolge Grenzwert 4
546.4	0		1299	Zeichen B für Zeichenfolge Grenzwert 4
546.4	0		1300	Zeichen C für Zeichenfolge Grenzwert 4
588.4	0		1301	Zeichen D für Zeichenfolge Grenzwert 4
5dE.4	0		1302	Zeichen E für Zeichenfolge Grenzwert 4

Tabelle 15: Menü Dut

Anzeige	Standardwert	KONF	MOD-Bus	Beschreibung
rL.1	1		787	Bezug für Ausgang OUT1
rL.2	2		789	Bezug für Ausgang OUT2
rL.3	3		791	Bezug für Ausgang OUT3
rL.4	4		793	Bezug für Ausgang OUT4
LYP.An	5		799	Typ für Analogausgang W
rl F.An	0		800	Bezug Ausgang W
Lo.An	-19 999		LSW: 801	Unterer Skalenwert Ausgang W
HI .An	20 000		MSW: 803	Oberer Skalenwert Ausgang W
ALS	1		807	Wahl der Sensorspeisung

Tabelle 16: Menü PR5

Anzeige	Standardwert	KONF	MOD-Bus	Beschreibung
PAS	0			Passwort
Pro	0		49	Schutzcode

Tabelle 17: Menü Hrd

Anzeige	Standardwert	KONF	MOD-Bus	Beschreibung
hd.1	0		809	
Func .A	0		815	Mathematische Funktion A
In I.A	0		816	Erster Operand von Func .Я
1 n2.A	0		817	Zweiter Operand von Func.Я
OPEr.A	0		818	Operator von Func .Я
C 1.A	0,00		819	Koeffizient [I.A
C2.A	0		820	Koeffizient [2.8
C J.A	0,00		821	Koeffizient [].A
[4.A	0		822	Koeffizient [4.8
C5.A	0,00		823	Koeffizient [5.A
Func.b	0		824	Mathematische Funktion b
In I.b	0		825	Erster Operand von Func.b
l n2.6	0		826	Zweiter Operand von Func.b
OPEr.b	0		827	Operator von Func .b
С 1.6	0,00		828	Koeffizient [1.b
С2.ь	0		829	Koeffizient [2.b
СЭ.Ь	0,00		830	Koeffizient [].b
[Ч.Ь	0		831	Koeffizient [4.b
С5.Ь	0,00		832	Koeffizient [5.b
AL.n	4		834	Anzahl freigegebene Grenzwerte
50E.1	8		835	Funktion Taste [PEAK]
5. Jud	11		836	Funktion Taste [CAL/RST]
but.3	23		837	Funktion Taste [*]
di 6. I	0		838	Funktion Digitaleingang DI1
di 6.2	0		839	Funktion Digitaleingang DI2
FLd	0,5		846	Digitalfilter für Anzeige PV
d5.5P	17		847	Wahl der auf der Anzeige PV angezeigten Größe

Anzeige	Standardwert	KONF	MOD-Bus	Beschreibung
d5.F	8		848	Wahl der auf der Anzeige F angezeigten Größe
dS.PU	16		1279	Wahl der Maßeinheit für die Anzeige auf Display F für In.1
SdS.SP	17		1280	Wahl der Maßeinheit für die Anzeige auf Display F für In.2
SdS.F	18		1281	Wahl der Maßeinheit für die Anzeige auf Display F für In.3
SdS.PU	19		1282	Wahl der Maßeinheit für die Anzeige auf Display F für In.4
LEd.I	22		849	Funktion LED 1
LEd.2	41		850	Funktion LED 2
LEd.3	0		851	Funktion LED 3
LEd.4	0		852	Funktion LED 4

Tabelle 18: MenüL in

Anzeige	Standardwert	KONF	MOD-Bus	Beschreibung	
ESP.L	1		858	Linearisierungsart	
SEEP.n	4		859	Anzahl Intervalle	
5.00	0		LSW: 860 MSW: 861	Punkt 0 Dem Skalenangang zugewiesener Wert	(Step 0)
5.0 I_A	2 500		LSW: 862 MSW: 863	Punkt 1 Wert Eingang [1/10.000] vom Endwert.	(Step 1)
5.0 I_ b	5 000		LSW: 864 MSW: 865	Punkt 1 zugewiesener Wert	(Step 2)
5.02_A	5 000		LSW: 866 MSW: 867	Punkt 2 Wert Eingang [1/10.000] vom Endwert.	(Step 3)
5.02_6	10 000		LSW: 868 MSW: 869	Punkt 2 zugewiesener Wert	(Step 4)
5.03_A	7 500		LSW: 870 MSW: 871	Punkt 3 Wert Eingang [1/10.000] vom Endwert.	(Step 5)
5.03_6	15 000		LSW: 872 MSW: 873	Punkt 3 zugewiesener Wert	(Step 6)
5.04_A	9 999		LSW: 874 MSW: 875	Punkt 4 Wert Eingang [1/10.000] vom Endwert.	(Step 7)

Digitalanzeiger burster

Anzeige	Standardwert	KONF	Profibus	Beschreibung	
5.04_6	20 000		LSW: 876 MSW: 877	Punkt 4 zugewiesener Wert	(Step 8)
5.05_A	0		LSW: 878 MSW: 879	Punkt 5 Wert Eingang [1/10.000] vom Endwert.	(Step 9)
5.05 <u>-</u> 6	0		LSW: 880 MSW: 881	Punkt 5 zugewiesener Wert	(Step 10)
5.06_A	0		LSW: 882 MSW: 883	Punkt 6 Wert Eingang [1/10.000] vom Endwert.	(Step 11)
5.06_6	0		LSW: 884 MSW: 885	Punkt 6 zugewiesener Wert	(Step 12)
5.07_A	0		LSW: 886 MSW: 887	Punkt 7 Wert Eingang [1/10.000] vom Endwert.	(Step 13)
5.07_6	0		LSW: 888 MSW: 889	Punkt 7 zugewiesener Wert	(Step 14)
5.08_A	0		LSW: 890 MSW: 891	Punkt 8 Wert Eingang [1/10.000] vom Endwert.	(Step 15)
5.08_6	0		LSW: 892 MSW: 893	Punkt 8 zugewiesener Wert	(Step 16)
5.09_A	0		LSW: 894 MSW: 895	Punkt 9 Wert Eingang [1/10.000] vom Endwert.	(Step 17)
5.09_6	0		LSW: 896 MSW: 897	Punkt 9 zugewiesener Wert	(Step 18)
5. IO_A	0		LSW: 898 MSW: 899	Punkt 10 Wert Eingang [1/10.000] vom Endwert.	(Step 19)
5. IO_6	0		LSW: 900 MSW: 901	Punkt 10 zugewiesener Wert	(Step 20)
5.11_A	0		LSW: 902 MSW: 903	Punkt 11 Wert Eingang [1/10.000] vom Endwert.	(Step 21)
5.11_6	0		LSW: 904 MSW: 905	Punkt 11 zugewiesener Wert	(Step 22)
5.12_A	0		LSW: 906 MSW: 907	Punkt 12 Wert Eingang [1/10.000] vom Endwert.	(Step 23)
5.12_6	0		LSW: 908 MSW: 909	Punkt 12 zugewiesener Wert	(Step 24)
5.13_A	0		LSW:910 MSW:911	Punkt 13 Wert Eingang [1/10.000] vom Endwert.	(Step 25)

Anzeige	Standardwert	KONF	Profibus	Beschreibung	
5.I3_b	0		LSW: 912 MSW: 913	Punkt 13 zugewiesener Wert	(Step 26)
5. IY_A	0		LSW: 914 MSW: 915	Punkt 14 Wert Eingang [1/10.000] vom Endwert.	(Step 27)
5. 14_6	0		LSW: 916 MSW: 917	Punkt 14 zugewiesener Wert	(Step 28)
5. IS_A	0		LSW: 918 MSW: 919	Punkt 15 Wert Eingang [1/10.000] vom Endwert.	(Step 29)
5.IS_B	0		LSW: 920 MSW: 921	Punkt 15 zugewiesener Wert	(Step 30)
5.16_A	0		LSW: 922 MSW: 923	Punkt 16 Wert Eingang [1/10.000] vom Endwert.	(Step 31)
5.16_6	0		LSW: 924 MSW: 925	Punkt 16 zugewiesener Wert	(Step 32)
5. I7_A	0		LSW: 926 MSW: 927	Punkt 17 Wert Eingang [1/10.000] vom Endwert.	(Step 33)
5. П_Ь	0		LSW: 928 MSW: 929	Punkt 17 zugewiesener Wert	(Step 34)
5.10_A	0		LSW: 930 MSW: 931	Punkt 18 Wert Eingang [1/10.000] vom Endwert.	(Step 35)
5.IØ_6	0		LSW: 932 MSW: 933	Punkt 18 zugewiesener Wert	(Step 36)
5. 19_A	0		LSW: 934 MSW: 935	Punkt 19 Wert Eingang [1/10.000] vom Endwert.	(Step 37)
5.19_6	0		LSW: 936 MSW: 937	Punkt 19 zugewiesener Wert	(Step 38)
5.20_A	0		LSW: 938 MSW: 939	Punkt 20 Wert Eingang [1/10.000] vom Endwert.	(Step 39)
5.20_ ь	0		LSW: 940 MSW: 941	Punkt 20 zugewiesener Wert	(Step 40)
5.2 I_A	0		LSW: 942 MSW: 943	Punkt 21 Wert Eingang [1/10.000] vom Endwert.	(Step 41)
5.21_6	0		LSW: 944 MSW: 945	Punkt 21 zugewiesener Wert	(Step 42)
5.22_A	0		LSW: 946 MSW: 947	Punkt 22 Wert Eingang [1/10.000] vom Endwert.	(Step 43)

Digitalanzeiger burster

Anzeige	Standardwert	KONF	Profibus	Beschreibung	
5.22_6	0		LSW: 948 MSW: 949	Punkt 22 zugewiesener Wert	(Step 44)
5.23_A	0		LSW: 950 MSW: 951	Punkt 23 Wert Eingang [1/10.000] vom Endwert.	(Step 45)
5.23_6	0		LSW: 952 MSW: 953	Punkt 23 zugewiesener Wert	(Step 46)
5.24_A	0		LSW: 954 MSW: 955	Punkt 24 Wert Eingang [1/10.000] vom Endwert.	(Step 47)
5.24_ь	0		LSW: 956 MSW: 957	Punkt 24 zugewiesener Wert	(Step 48)
5.25_A	0		LSW: 958 MSW: 959	Punkt 25 Wert Eingang [1/10.000] vom Endwert.	(Step 49)
5.25_6	0		LSW: 960 MSW: 961	Punkt 25 zugewiesener Wert	(Step 50)
5.26_A	0		LSW: 962 MSW: 963	Punkt 26 Wert Eingang [1/10.000] vom Endwert.	(Step 51)
5.26_6	0		LSW: 964 MSW: 965	Punkt 26 zugewiesener Wert	(Step 52)
5.27_A	0		LSW: 966 MSW: 967	Punkt 27 Wert Eingang [1/10.000] vom Endwert.	(Step 53)
5.27_Ь	0		LSW: 968 MSW: 969	Punkt 27 zugewiesener Wert	(Step 54)
5.20_A	0		LSW: 970 MSW: 971	Punkt 28 Wert Eingang [1/10.000] vom Endwert.	(Step 55)
5.20_6	0		LSW: 972 MSW: 973	Punkt 28 zugewiesener Wert	(Step 56)
5.29_A	0		LSW: 974 MSW: 975	Punkt 29 Wert Eingang [1/10.000] vom Endwert.	(Step 57)
5.29_6	0		LSW: 976 MSW: 977	Punkt 29 zugewiesener Wert	(Step 58)
5.30_A	0		LSW: 978 MSW: 979	Punkt 30 Wert Eingang [1/10.000] vom Endwert.	(Step 59)
5.30_6	0		LSW: 980 MSW: 981	Punkt 30 zugewiesener Wert	(Step 60)
5.3 I_A	0		LSW: 982 MSW: 983	Punkt 31 Wert Eingang [1/10.000] vom Endwert.	(Step 61)

Anzeige	Standardwert	KONF	Profibus	Beschreibung
5.3 I_B	0		LSW: 984 MSW: 985	Punkt 31 zugewiesener Wert (Step 62)
5.32_A	0		LSW: 986 MSW: 987	Punkt 32 Wert Eingang (Step 63) [1/10.000] vom Endwert.
5.32_6	0		LSW: 988 MSW: 989	Punkt 32 zugewiesener Wert (Step 64)
5.Ec 1	0,00		990	Step mV Skalenanfang - nur bei Tc custom
5.62	0,00		991	Step mV Skalenende - nur bei Tc custom
5.Ec3	0,000		992	Step mV bei Temperatur 50°C - nur bei Tc custom

Digitalanzeiger ^{burster}

Isolation 4 KV

Seite 158

^{burster} Digitalanzeiger

18.3 Funktionsblockdiagramm

Digitalanzeiger ^{burster}

^{burster} Digitalanzeiger

