USERS MANUAL 108A

SINGLE- TO SIX PHASE

INFRATEK POWER ANALYZER

Table of Contents

1. Power Analyzer Features, Quick Overview, Safety 5
1.1 Standard Measure Mode 6
1.2 Logging Measure Mode 7
1.3 Transient Measure Mode 7
1.4 Power-Speed Measure Mode (Option) 8
1.5 Power Analyzer Rear Panel 9
1.6 Summary of 108A Power Analyzer Features 10
1.7 Safety Instructions 11
2. Connection to Circuits 12
2.1 Measurement in 3-Phase mains Circuit 12
2.1.1 Three Wattmeter Connection 12
2.1.2 Aron Connection 13
2.1.3 Connecting a 6 Phase Power Analyzer to 2 Mains Circuits 14
3. 108A Mathematical Definitions and Specifications 15
3.1 Mathematical Definitions 15
3.2 Specifications 19
4. Operating The Power Analyzer from the Front Panel 23
4.1 Operations in Standard Measure Mode 24
4.1.1 Selecting Measure Mode 24
4.1.2 Selecting Current Inputs using same Inputs for all Phases 25
4.1.3 Selecting individual current inputs per phase 25
4.1.4 Selecting Current Range using same range for all phases 26
4.1.5 Selecting Voltage Range using same range for all phases 26
4.1.6 Selecting Measurement Synchronization using same synchronization for all phases 27
4.1.7 Selecting Averaging Time 27
4.1.8 Selecting Display Pages 27
4.1.9 Selecting Wave Forms (Graph) 28
4.1.10 Selecting Display L1 to L4 and L3 to L6 28
4.1.11 Selecting FFT Table and FFT Bar Graph 28
4.1.12 Selecting AC or DC+AC-Coupling 28
4.1.13 Selecting Display RUN and Display HOLD 29
4.1.14 Resetting Energy 29
4.1.15 Selecting Display Quantities 29
4.1.17 Selecting SETUP 32
4.2 Operations in Logging Measure Mode 35
4.2.1 Valid Synchronization 35
4.2.2 Selecting CYCLES 35
4.2.3 What has to be observed when using Logging? 36
4.3 Operations in Transient Measure Mode 37
4.3.1 What is measured in Transient Measure Mode? 37
4.3.2 Two Ways To Use Transient Measure Mode 37
4.4 Basics Of Power-Speed Measure Mode (Option) 39
4.4.1 What Is Measured In Power-Speed Measure Mode. 39
4.4.2 Operations in Power-Speed Measure Mode 39
5. Operating The Power Analyzer Using A Computer Interface 42
5.1 What Has To Be Observed When Using An Interface 42
5.2 What Has To Be Observed When Using The Interface Command Set 42
5.3 Computer Interface Command Set 45
5.4 Composite Commands 45
5.5 Reading voltages, reading and writing voltage scale factors 46
5.6 Reading currents, reading and writing current scale factor. 47
5.7 Reading power, apparent power, and reactive power 48
5.8 Reading energy, charge, and time 48
5.9 Reading frequency, impedance, and phase angle. 49
5.10 Reading and writing range of harmonics, number phases for output, and cycle for Logging 49
5.11 Read and write display, RS232 Baud Rate, IEEE-488 address. 50
5.12 Read and write common control commands. 50
6. Computer Operating Software 52
6.1 Installing Computer Operating Software 52
6.2 108A Data Window (Computer Software) 53
6.2.1 Select Interface 53
6.2.2 Select instrument mode 54
6.2.3 Select software mode 55
6.2.4 Operate the computer software 55
6.2.5 Input, Ranges, Synchronization, Aperture selection 56
6.2.6 Phase Slider for selecting individual settings per phase 56
6.2.7 Curve 56
6.2.8 FFT Numerics (Harmonics) 57
6.2.9 FFT Bar Graph (Harmonics) 57
6.2.10 Vector Graph (Phase Angle). 57
6.2.11 IEC Data Window 58
6.2.12 Control / Setting Window 60
6.2.13 Logging-, Transient-, Power Speed Measure Mode 62
7. Analog Input and -Output 63
7.1 Analog Input And Output Specification. 64
7.2 Programming The Analog Outputs 64
7.3 Using Inputs for Motor Testing (See also 4.1 Motor Testing) 65
7.4 Using Low Current Shunt for Standby Power Measurement 66
8. Data Management 67
8.1 Operating the Power Analyzer using the USB Interface 67
8.2 Operating the Power Analyzer using the Ethernet Interface 67
8.3 Measurement Data from the Power Analyzer (USB) to Computer. 68
9. Calibration via 108A Front Panel 69
9.1 Equipment Needed 69
9.2. Calibration Procedure 69
9.2.1 Voltage Calibration At 60 Hz 69
9.2.2 Current Calibration At 60 Hz , Shunt Input Calibration 70
9.2.3 Storing The Calibration Constants 71
9.3. A Few Practical Hints 71
9.4. 108A Calibration using Windows Operating Software (LabView) 72
9.4.1 Equipment Needed 72
9.4.2 Calibration Procedure 72
9.4.3 Voltage Calibration At 60 Hz 72
9.4.4 Current Calibration At 60 Hz (IN 5A) 73
9.4.5 Current Calibration At 60 Hz (IN 1A) 74
9.4.6 Current Calibration At 60 Hz (IN 30A) 75
9.4.7 Current Calibration At 60 Hz (SHUNT) 75
9.4.8 Storing The Calibration Constants 76
9.4.9 A Few Practical Hints 76
10. Amendment 77
10.1 Electric Motor Testing Using Infratek 108A-6 High Precision Power Analyzer 77
10.2 Efficiency Measurement of an Inverter driven Induction Motor in Steady State 78
10.3 Circuit Model of an Asynchronous Induction Motor 79
10.4 Measurements on loaded Motor 79
10.5 Measurement of Start-up Behaviors of Inverter Driven Induction Motor 80
10.6 Simultaneous Measurement of 2 Synchronous Motors (PMSM, BLDC) 81
10.7 Advantage of the 108A Power Analyzer 81
10.8 Circuit Model of a Synchronous Motor 82
10.9 From a blocked rotor test 82
10.10 Determination of synchronous inductances Ld and Lq of IPMSM and PMSM 83
10.11 Measure d-axis inductance Ld 83
10.12 Measure q-axis inductance Lq 84
10.13 Measure Ohmic component of Loss Resistance R = Rohm + Rm 84
10.14 Back - EMF (BEMF) 85
10.15 Transient Performance of Synchronous Motors 85

1. Power Analyzer Features, Quick Overview, Safety

The Infratek 108A High Precision Power Analyzer is available in 1-, 2-, 3-, 4-, 5-, or 6- phase versions. All voltage inputs (ranges 0.3 V up to 1500 Vpeak) and all current inputs (1.5 mA up to $1 \mathrm{~A} ; 15 \mathrm{~mA}$ up to 5 A ; 1 A up to 40 A ; and current shunt inputs 60 mV up to 6 V) are potential free and exhibit

- Excellent low noise
- Common mode suppression
- DC-stability
- Wide frequency range $(2 \mathrm{MHz})$
- Very low self-heating on current inputs.

There is no need to fiddle with dc-compensation, or changing current plug-ins. All is built into the input sections of the Power Analyzer, ready to be used.

Your intuition will guide you to operate the Power Analyzer touch screen correctly. With basic knowledge of power measurement, you will be able to change the settings to your needs. Almost all setting changes are accomplished with two touches on the display screen or two clicks with the mouse.

Figure 1.1 Shows the display of a 3-phase instrument in "Standard Mode".
Figure 1.1 shows the display of a 3-phase instrument in "Standard Mode". To change the current range from 15 mA to 500 mA touch the button "AUTOA". A pop-up window is presented from which you select " 500 mA ". Now the Power Analyzer is in 500 mA current range (manual ranging).

Figure 1.2 108A Value Selection Table

Just as simple is to change the quantity at the bottom line "Freq" to Arectified mean (Arect). Touch "Freq" at the left side of the display. This will present you a value selection table as shown in Figure 1.2. Now touch "Arect" which brings you back to Figure 1.1 with the bottom line quantity changed to "Arect".

Four different measure modes enhance the 108A Power Analyzer capabilities. These are: standard measure mode, logging measure mode, transient measure mode, and power-speed measure mode.

1.1 Standard Measure Mode

In the Standard Measure Mode 280 quantities per phase are continuously measured (no gaps) and are updated. Values can be displayed on four display pages, can be saved in internal memory, or on a memory stick, or can be transferred via Interface to a computer.

Touching "WAVE" will display a sub-menu which lets you select the current-, voltage-, and power wave forms of any phase.

Select "OFF" (Wave OFF). Now you have access to the buttons "FFT Table". Touching "FFT Table" selects "FFT L1". On five pages you can now view the harmonics of current, voltage, power, and phase angle (harmonics 1 to 40 for current and voltage, harmonic 1-21 for power and phase angle).
Similarly, selecting "FFT Bar" the bar graph of the harmonics will be displayed in percent of the fundamental (1. harmonic).
Touching "FFT L1" will toggle to "FFT L2", "FFT L3", and so on.

1.2 Logging Measure Mode

The basic operation is as follows: Select the number of cycles for which you desire a periodic data output to the RS232- / USB-IEEE interface. If you perform measurements on the 50 Hz power line and you select cycles = 1 you obtain new data every 20 ms ; if you select cycles = 30000 you obtain new data every 10 minutes.

Before starting the measurement, a valid synchronization signal 5 Hz to 2 kHz must be applied to all installed phases of your Power Analyzer. Select SyncA, SyncV, or S_Ext V. Touch the START-button to start the measurement, touch the STOP-button to stop it. DC signals can also be measured (e.g. DC-motors). For DC you must apply an external synchronization signal in the frequency range $5 \mathrm{~Hz}-2 \mathrm{kHz}$ (select EXT synchronization).
Furthermore, the frequency of the synchronization can be varied up and down as much as 10\% per second.

From every phase you obtain 8 values: frequency, RMS current, RMS voltage, power, power factor, apparent power, energy Wh, and apparent energy VAh.
If you select the baud rate of 463.2 kBaud (in SETUP) a 6-phase Power Analyzer transmits $8 \times 6=48$ values in less than 20 ms . This can be used to analyze the start-up behaviour of power systems.

1.3 Transient Measure Mode

The transient measure mode can be used in two ways: You can catch current-, voltage-, and power wave forms in a start-up on all phases simultaneously or you can view all wave forms at a critical operating point in Standard Measure Mode (up to maximum 6 phases).

The duration of the measurement is set by changing in the SETUP menu the Transient-id from 0 to 7 . Sections of the wave forms can be expanded by simply touching one of the 4 "Zoom Sectors" (maximum zoom factor is 256).
For proper operation you must apply signal synchronization to all installed phases of your Power Analyzer.

Figure 1.3 108A 3-Phase Power Analyzer Display in Transient Measure Mode

1.4 Power-Speed Measure Mode (Option)

This measure mode analyzes the performance of electric devices such as electric cars.
In 20ms intervals the following data are stored in internal memory: RMS current, RMS voltage, power, apparent power, energy, apparent energy, and speed of an axis or a wheel. Rms current and -voltage are average values of the number of phases used, power and energy are the sums of phases used.

Power speed measurements can be performed on DC- as well as AC-drives using either phase 1, or phase 1 and phase 2, or using phase 1, 2, and phase 3 of the Power Analyzer.

At the end of a measurement cycle (maximum 11 seconds) data versus time are plotted, can be expanded to view details, or can be stored.

Figure 1.4 108A 3-Phase Power Analyzer in Power-Speed Measure Mode

1.5 Power Analyzer Rear Panel

Figure 1.5 shows the 108A rear panel with three phases installed. Every phase consists of a potential free voltage input along the top side.
Below the voltage inputs are the 40A input, and the 5A input (7A max.) with common Lo socket. Above the 40A socket is the 3 pole Amphenol socket for the 1 A input and shunt input. It is normally covered with the shunt short circuit cap.

Figure \quad 1.5 Rear panel of a 3 Phase Power Analyzer

All four current inputs are referenced to the black Lo socket and are potential free.

Figure 1.63 pole Amphenol Socket for 1A current input and shunt input

For use of 1 A input remove the shunt short circuit cap and insert the 1 A adapter. The 1A adapter is the Hi input, and the black current socket is the 1A Lo.

Caution: When 1A adapter is removed the shunt short circuit cap must be inserted.

1.6 Summary of 108A Power Analyzer Features

- Available as 1-, 2-, 3-, 4-, 5-, or 6-phase instrument.
- Highest precision available: 0.02% reading $+0.02 \%$ range .
- 18bit measurement resolution. High accuracy at 10% full scale.
- Wide angle, touch-screen TFT color display (800×480 pixels).
- Simple to operate, most settings in 2 steps (2 touches).
- Settings per phase for V- A-ranges, current inputs, and synchronization.
- Standard-, Logging-, Transient-, Power-Speed measurement functions.
- Standard: calculates all quantities of power electronics, including motor- and transformer values, harmonics, energies, analog inputs, and speed.
- Very fast data transfer; up to 3400 values per second.
- High DC precision for solar applications.
- Includes 4 current inputs: 1mA-1A, 15mA-5A, 1A - 40A, shunt.
- Voltage Ranges: 0.3 V to 1000 V .
- USB memory stick >4GByte
- USB interface for downloading measurement data
- Optional interfaces: RS232, USB, Ethernet, IEEE-488
- Optional: 2 frequency inputs max $150 \mathrm{kHz}, 6$ analog inputs, and 12 analog outputs.
- Interface commands for fast data transmission.
- Optional operating software under Windows, LabView Driver
- Reasonably priced by virtue of smart design.
- Simple servicing, modular concept, pre-calibrated input amplifiers.
- Optional high precision, broadband, current sensors.
- Upgrading the number of installed phases is possible at any time

1.7 Safety Instructions

The manufacture of this equipment conforms to the safety standards defined in IEC 61010-1.

Protection: The device assigns to protection class II and is equipped with a protective earth stud.

This equipment may be operated only by qualified personnel. A qualified person has completed training to operate a Power Analyzer.

Proper Use

Do not exceed maximum currents of the 1A-input, 5A-input, 30A-input, and the shunt input. Do not exceed maximum voltages on voltage inputs. Do not exceed 1000 V on any input terminal with respect to case.
Improper use or modifying any part of the equipment shall void all warranty.

Warranty
The warranty period is 2 years from the date of purchase.

Connecting a Power Analyzer

- Use a power line cable with earth connection
- Inspect the connecting cable for faulty connection
- Connect the rear panel earth stud to power ground
- Make cable connections with the help of a second qualified person
- Ensure that connected devices work properly
- In case of direct connection to current circuits we recommend to use an external protection circuit to not exceed the maximum current input in use (1A, 5A, 30A)
- Refer Power Analyzer servicing and repair to authorized organizations
- Use of this instrument in life support systems and in systems for people transportation must be expressly authorized by the manufacturer
- Use shielded cables for interface connections and keep interface cables away from parts which can carry large currents and transients.

2. CONNECTION TO CIRCUITS

Please read section "Safety" of this manual before performing the measurements described below.

2.1 Measurement in 3-Phase mains Circuit

2.1.1 Three Wattmeter Connection

Power and energy consumed by a load are positive values. This means that current Hi and Lo, and voltage Hi and Lo must be connected in correct directions (polarity).

Rule 1: All currents flow from supply to load that is into the red current socket and from current Lo (black socket) to input of load.

Rule 2: \quad Connect current Lo to voltage Hi .
Connect all voltage Lo to power line neutral (3 wattmeter circuit)

Figure 2.1 Power Measurement in 3-phase mains circuit using three Wattmeter configuration. Rule 1 and Rule 2 apply.

Power values of the 3 phases are all positive. You can verify that power of phase 1 becomes negative by reversing current phase 1.

2.1.2 Aron Connection

Important! Do not use Aron Connection for unsymmetrical loads.

Figure 2.2 Measurement in 3-phase mains circuit using 2 Wattmeter configuration. Rule 1 and Rule 3 apply.

Rule 3: Voltage Lo connects to third wire not used for current measurement (Figure 2.2). Phase to phase voltages are measured.

The 2 Wattmeter circuit measures 2 currents, and 2 line-to-line voltages and determines total power of the 3 phase load. One of the displayed power values can become negative due to phase shifts of inductive loads. This may lead to confusion. Therefore, strictly follow rule 1 and rule 3 .

2.1.3 Connecting a 6 Phase Power Analyzer to 2 Mains Circuits

Figure 2.3 shows the connections to a 6-phase Power Analyzer using three 30A current inputs and three 1A current inputs from a three phase 0-100A current sensor module. Such current sensors have at 100A primary current a nominal of 50 mA output current and therefore require a current scaling factor of 2000 to display actual current and power.

This is how you proceed.

- Make connections as shown in Figure 2.3. Observe Rules 1 and 2 to obtain positive power on all phases. Note: Rms current is positive independent of direction
- Touch Phase 1 button, select 30A (green), touch Phase 1 to exit. Touch Phase 2 button, select 30A, touch Phase 2 to exit. Do the same for phase 3.
- Finally, select the 1A input for Phase 4,5, and 6.
- Select the appropriate ranges for current and voltage, or select auto-ranging.
- Select SETUP and enter the current scaling factors required for the current sensors

Figure 2.3 Power measurement using three 30A current inputs and three 1 A current inputs

3. 108A Mathematical Definitions and Specifications

3.1 Mathematical Definitions

Tables 3.1 and 3.2 define all quantities measured and computed. The "batch" column shows the symbol that must be used in the interface batch command of section 6 (setting the quantities viewed on the display).

Table 3.1. List of standard values that can be displayed

Description	Symbol $=$ Formula, Description		Batch
rms current	Arms $=\left(1 / \mathrm{T}^{\top} \int_{0} A^{2} \mathrm{dt}\right)^{1 / 2,}$ includes all harmonics		A00
mean current	Amean $=1 / T{ }^{\top} j_{0}$ Adt, dc-component of current		A01
rectified mean current	Arect $=1 / \mathrm{T}^{\top} \mathrm{J}_{0}\|A\| d t$, rectified mean current		A02
peak current	Amax = maximum current in time interval		A10
current distortion	Athd1 $=\left(\mathrm{Arms}^{2}-\mathrm{A} 01^{2}\right)^{1 / 2} /$ Arms, use for frequency inverter		A23
harmonic current distortion	Athd2 $=\left(\Sigma A n^{2}\right)^{1 / 2} /$ Arms, $n=2,3, \ldots 40$		A25
current crest factor	Acf = Amax / Arms		A20
current form factor	Aff = Arms / Arect, is 1.1107 for sine wave		A22
current fundamental	A01 = fundamental current of FFT		A35
current 2. to 7. harm	A02,A03,A04,A05,A06,A07	A37,A39,A41,A43,A45,A47	
current 8 . to 13. harm	A08,A09,A10,A11,A12,A13	A49,A51,A53,A55,A57,A59	

rms voltage	Vrms $=\left(1 / \mathrm{T}^{\top} \int_{0} \mathrm{~V}^{2} \mathrm{dt}\right)^{1 / 2}$, includes all harmonics	A03
mean voltage	Vmean $=1 / T^{\top} \Gamma_{0} \mathrm{Vdt}$, dc component of voltage	A04
rectified mean voltage	Vrect $=1 / \mathrm{T}{ }^{\top} \int_{0} \mathrm{IVI} d t$, rectified mean voltage	A05
peak voltage	Vmax = maximum voltage in time interval	A13
lowest voltage	Vmin = lowest voltage in time interval	A12
peak to peak voltage	$\mathrm{Vptp}=\mathrm{V}_{\text {max }}-\mathrm{V}_{\text {min }}$	A11
voltage distortion	Vthd1 $=\left(\mathrm{Vrms}^{2}-\mathrm{V} 01^{2}\right)^{1 / 2} /$ Vrms, use for frequency inverter	A24
harmonic voltage distortion	Vthd2 $=\left(\Sigma \mathrm{Vn}^{2}\right)^{1 / 2} / \mathrm{Vrms}, \mathrm{n}=2,3, \ldots, 40$	A26

Table 3.1: continued. List of standard value that can be displayed

Description	Symbol = Formula, Description	
voltage crest factor	Vcf $=$ Vmax $/$ Vrms	Batch
voltage form factor	Vff $=$ Vrms / Vrect, is 1.1107 for sine wave	A21
voltage fundamental	V01 = fundamental voltage of FFT	A36
voltage 2. to 7. harm	$\mathrm{V} 02, \mathrm{~V} 03, \mathrm{~V} 04, \mathrm{~V} 05, \mathrm{~V} 06, \mathrm{~V} 07$	$\mathrm{~A} 38, \mathrm{~A} 40, \mathrm{~A} 42, \mathrm{~A} 44, \mathrm{~A} 46, \mathrm{~A} 48$
voltage 8. to 13. harm	$\mathrm{V} 08, \mathrm{~V} 09, \mathrm{~V} 10, \mathrm{~V} 11, \mathrm{~V} 12, \mathrm{~V} 13$	$\mathrm{~A} 50, \mathrm{~A} 52, \mathrm{~A} 54, \mathrm{~A} 56, \mathrm{~A} 58, \mathrm{~A} 60$

active power	$\mathrm{W}=1 / \mathrm{T} \mathrm{T}_{0} \mathrm{u} \cdot \mathrm{i}$ dt, total power in W	A 06
apparent power	$\mathrm{VA}=\mathrm{Arms} \cdot \mathrm{Vrms}$, total apparent power VA	A 17
reactive power	$\mathrm{Var}= \pm\left(\mathrm{Papp}^{2}-\mathrm{Pact}^{2}\right)^{1 / 2}$, reactive power Var	A 18
power factor	$\mathrm{PF}=\mathrm{Pact} / \mathrm{Papp}$, includes all harmonics	A 27
fundamental power	$\mathrm{W} 01=\mathrm{A} 01 \cdot \mathrm{~V} 01 \cdot \cos \varphi 01, \varphi 01=$ phase	A 61
fund apparent power	$\mathrm{VA01}=\mathrm{A} 01 \cdot \mathrm{~V} 01$	A 29
fund reactive power	Var01 $=\left(\mathrm{VA01}{ }^{2}-\mathrm{W} 01^{2}\right)^{1 / 2}$, magnitude only	A 30
fund power factor	$\mathrm{PF01}=\mathrm{W} 01 / \mathrm{VA01}$	A 28
power 2. to 6. harm	$\mathrm{W} 02, \mathrm{~W} 03, \mathrm{~W} 04, \mathrm{~W} 05, \mathrm{~W} 06$	$\mathrm{~A} 63, \mathrm{~A} 65, \mathrm{~A} 67, \mathrm{~A} 69, \mathrm{~A} 71$
power 7. to 10. harm	$\mathrm{W} 07, \mathrm{~W} 08, \mathrm{~W} 09, \mathrm{~W} 10$	$\mathrm{~A} 73, \mathrm{~A} 75, \mathrm{~A} 77, \mathrm{~A} 79$
power of distortion	$\mathrm{D}=\mathrm{V} 01(\mathrm{LAn})^{1 / 2}, \mathrm{n}=2,3, \ldots, 40 ; \mathrm{D}$ in Watt	A 31

energy	$\mathrm{Wh}=\mathrm{t}_{0}$ Pact $\cdot \mathrm{dt}$, active energy in Wh	A 14
apparent energy	VAh $=\mathrm{t}_{0}$ Papp $\cdot \mathrm{dt}$, use it for long term PF	A15
reactive energy	VAR $=\mathrm{t}_{0}$ Prea $\cdot \mathrm{dt}$, can be positive $/$ negative	A16
battery charge	Ah $=\mathrm{t}_{0}$ Arect $\cdot \mathrm{dt}$, is positive only	A09
elapsed time	time $=\mathrm{t}_{0} \mathrm{dt}$, time in hours since RESET	A32

magnitude impedance	Mag Z = V01 / A01 fundamental		A33
phase of fundamental	Phi01 = phase V01, A01		A34
phase 2. to 6. harm	phase 2., 3., 4., 5., 6. harmonic	A64, A66, A68, A70, A72	
phase 7. to 10. harm	phase 7., 8., 9., 10. harmonic	A74, A76, A78, A80,	
frequency	Freq =zero crossing of A, V, Ext; SYNCI, U, Ext	A07	

Note: \quad Harmonic values not contained in table 3.1 can be read via interface: These are: current A14 to A88 and voltage V14 to V88.

Table 3.2: List of special values that can be displayed		
Description	Symbol = Formula, Description	batch
sum1 of power	sum1 = Pact1 + Pact2 + Pact3; Power phase 1+2+3	A81
sum2 of power	sum2 = Pact1 + Pact2	
sum3 of power	sum3 = Pact4 + Pact5 + Pact6; Power phase 4+5+6	
sum4 of power	sum4 = Pact4 + Pact5	A82
sum5 of power	sum5 = not used	
sum6 of power	sum6 = not used	
ratio1 of power	ratio1 = Pact4 / Pact1 + Pact2 + Pact3	A83
ratio2 of power	ratio2 $=$ Pact3 / Pact1 + Pact2	
ratio3 of power	ratio3 $=$ Pact2 / Pact1	
ratio4 of power	ratio4 = Pact4 + Pact5 + Pact6 / Pact1 +Pact2 +Pact3	A84
ratio5 of power	ratio5 = Pact6 / Pact4 + Pact5	
ratio6 of power	ratio6 $=$ Pact5 / Pact4	
Motor1 Values from phase 1, phase 2, and phase 3		
Mec input power	Pin = electric power applied to motor	A85
Mec output power	Pout $=$ Pin - Pin at no load in Watt (Loss)	
Torque	Torque $=$ Pout \cdot poles1 / $4 \cdot 3.1416 \cdot$ frequency 1	
Slip	Slip $=1$ - fout / fin	A86
rotation per minute	rpm $=120 \cdot$ frequency $1 /$ poles 1	
efficiency	efficiency $=1$ - Pin at no load / Pin	
Transformer values from phase 1 and phase 2		
Vrect, rms corrected	Vcorrected $=1.1107 \cdot$ Vrect	A87
correted power	Corr power $=$ Pact $1 /(0.5+0.5 \cdot$ Vrms $/$ Vcorrected $)$	
Loss factor Q	$Q=\tan X / R$, where $Z=R+j X$	

Table 3.2: List of special values that can be displayed

Description	Symbol $=$ Formula, Description	batch
Loss resistance	Equivalent loss resistance $=$ Pact1 $/$ Arms 2	
Loss inductance	Equivalent loss reactance $=$ Prea $1 /$ Arms 2	A88
turn ratio	turn ratio $=\mathrm{N} 2 / \mathrm{N} 1=$ Vrms2 $/$ Vrms1, no load	

analog input1	$\pm 5 \mathrm{~V}$ analog input1	A89
analog input2	$\pm 5 \mathrm{~V}$ analog input2	
analog input3	$\pm 5 \mathrm{~V}$ analog input3	
analog input4	$\pm 5 \mathrm{~V}$ analog input4	A90
analog input5	$\pm 10 \mathrm{~V}$ analog input5	
analog input6	$\pm 10 \mathrm{~V}$ analog input6	
V1 line to line	$\mathrm{V} 1 \mathrm{ItI}=\left(\mathrm{V}_{1 \mathrm{rms}}+\mathrm{V}_{2 \mathrm{rms}}\right) \cdot 0.86603$	A93
V2 line to line	$\mathrm{V} 2 \mathrm{ttI}=\left(\mathrm{V}_{2 \mathrm{rms}}+\mathrm{V}_{3 \mathrm{rms}}\right) \cdot 0.86603$	
V3 line to line	$\mathrm{V} 3 \mathrm{ItI}=\left(\mathrm{V}_{3 \mathrm{rms}}+\mathrm{V}_{1 \mathrm{rms}}\right) \cdot 0.86603$	
V4 line to line	$\mathrm{V} 4 \mathrm{ItI}=\left(\mathrm{V}_{4 \mathrm{rms}}+\mathrm{V}_{5 \mathrm{~ms}}\right) \cdot 0.86603$	A94
V5 line to line	$\mathrm{V} 5 \mathrm{ttI}=\left(\mathrm{V}_{5 \mathrm{rms}}+\mathrm{V}_{6 \mathrm{rms}}\right) \cdot 0.86603$	
V6 line to line	$\mathrm{V} 6 \mathrm{ItI}=\left(\mathrm{V}_{6 \mathrm{rms}}+\mathrm{V}_{4 \mathrm{rms}}\right) \cdot 0.86603$	
Motor2 Values from phase 4, phase 5, phase 6		
Mec input power	Pin = electric power applied to motor	A95
Mec output power	Pout $=$ Pin - Pin at no load in Watt	
Torque	Torque $=$ Pout \cdot poles $/ 4 \cdot 3.1416 \cdot$ frequency2	
Slip	Slip = 1 - fout / fin	A96
rotation per minute	rpm $=120 \cdot$ frequency $/$ poles	
efficiency	efficiency = 1 - Pin at no load / Pin	

Example:

Assuming you are using a 2-phase Power Analyzer and want to display ratio 3 = Pact2 / Pact1 at the bottom of the display (Figure 1.1). Touch icon, "Ah" (Fig. 1.1). In the value selection table touch "R1|R2|R3" (Fig. 1.2).
In Figure 1.1 at the bottom line you have now 3 quantities displayed: ratio1, ratio2, ratio3, where ratio1 $=0$, ratio2 $=0$, and ratio3 $=$ Pact2 $/$ Pact1 .

3.2 SpECIFICATIONS

Voltage Measurement

Measured \& Computed Voltage Values

RMS voltage
Mean voltage
Rectified mean voltage
Peak voltage
Lowest voltage
Peak to peak voltage
Voltage distortion
Harmonic voltage distortion

Vrms $=\left(1 / \mathrm{T}^{\top} j_{0} \mathrm{~V}^{2} \mathrm{dt}\right)^{1 / 2}$, includes all harmonics Vmean $=1 / \mathrm{T}^{\mathrm{T}} \mathrm{J}_{0} \mathrm{Vdt}$, dc component of voltage
Vrect $=1 / T^{\top} \int_{0}$ IVI dt, rectified mean voltage
Vmax = maximum voltage in time interval
Vmin = lowest voltage in time interval
V ptp $=\mathrm{V}_{\text {max }}-\mathrm{V}_{\text {min }}$
Vthd1 $=\left(\mathrm{Vrms}^{2}-\mathrm{V} 01^{2}\right)^{1 / 2} / \mathrm{Vrms}{ }^{2}{ }^{2}$
Vthd2 $=\left(\Sigma \mathrm{Vn}^{2}\right)^{1 / 2} / \mathrm{Vrms}, \mathrm{n}=2,3, \ldots, 40$

Voltage crest factor	$\mathrm{Vcf}=\mathrm{Vmax} / \mathrm{Vrms}$
Voltage form factor	$\mathrm{Vff}=\mathrm{Vrms} / \mathrm{Vrect}$, is 1.1107 for sine wave
Voltage fundamental	$\mathrm{V} 01=$ fundamental voltage of FFT
V1 line to line	$\mathrm{V} 1 \mathrm{ItI}=\left(\mathrm{V}_{1 r \mathrm{~ms}}+\mathrm{V}_{2 \mathrm{rms}}\right) \cdot 0.86603$
V 2 line to line	$\mathrm{V} 2 \mathrm{ItI}=\left(\mathrm{V}_{2 \mathrm{rms}}+\mathrm{V}_{3 \mathrm{rms}} \cdot 0.86603\right.$
V 3 line to line	$\mathrm{V} 3 \mathrm{ItI}=\left(\mathrm{V}_{3 \mathrm{rms}}+\mathrm{V}_{1 \mathrm{rms}}\right) \cdot 0.86603$
V4 line to line	$\mathrm{V} 4 \mathrm{ItI}=\left(\mathrm{V}_{4 \mathrm{rms}}+\mathrm{V}_{5 \mathrm{rms}}\right) \cdot 0.86603$
V5 line to line	$\mathrm{V} 5 \mathrm{ItI}=\left(\mathrm{V}_{5 \mathrm{rms}}+\mathrm{V}_{6 \mathrm{rms}}\right) \cdot 0.86603$
V6 line to line	$\mathrm{V} 6 \mathrm{ItI}=\left(\mathrm{V}_{6 \mathrm{rms}}+\mathrm{V}_{4 \mathrm{rms}}\right) \cdot 0.86603$

Current Measurement

Measured \& Computed Current Values

RMS current	Arms $=\left(1 / T^{\top}{ }_{0} A^{2} \mathrm{dt}\right)^{1 / 2}$, includes all harmonics	Current distortion	Athd1 $\left.=\left(\text { Arms }^{2}-\mathrm{A} 01^{2}\right)^{1 / 2} / \mathrm{Arms}^{2}{ }^{2}\right)$
Mean current	Amean $=1 / \mathrm{T}^{\top} \int_{0}$ Adt, dc-component of current	Harmonic current distortion	Athd2 $=\left(\Sigma A n^{2}\right)^{1 / 2} /$ Arms, $\mathrm{n}=2,3, \ldots 40$
Rectified mean current	Arect $=1 / T^{\top} \int_{0} I A I d t$, rectified mean current	Current crest factor	Acf = Amax / Arms
Peak current	Amax = maximum current in time interval	Current form factor	Aff = Arms / Arect, is 1.1107 for sine wave
		Current fundamental	A01 = fundamental current of FFT

1) Typical max. Error2) Used for frequency inverter

Power Measurement

Measured \& Computed Power Values

Measured \& Computed Power Values			
Active power	$\mathrm{W}=1 / \mathrm{T}^{\top} \int_{0} \mathrm{u} \cdot \mathrm{i} d \mathrm{~d}$, total power in W	Fundamental power	$\mathrm{W} 01=\mathrm{A} 01 \cdot \mathrm{~V} 01 \cdot \cos \varphi 01, \varphi 01=$ phase
Apparent power	VA $=$ Arms \cdot Vrms, total apparent power VA	Fundamental apparent power	VA01 = A01 - V01
Reactive power	Var $= \pm\left(\text { Papp }^{2}-\text { Pact }^{2}\right)^{1 / 2}$, reactive power Var	Fundamental reactive power	Var01 $=\left(\mathrm{VAO1}^{2}-\mathrm{W} 01^{2}\right)^{1 / 2}$, magnitude only
Power Factor	PF = Pact / Papp, includes all harmonics	Power of distortion	$\mathrm{D}=\mathrm{V} 01\left(\Sigma A n^{2}\right)^{1 / 2}, \mathrm{n}=2,3, \ldots, 40 ; \mathrm{D}$ in Watt
		Power Factor of Fundamental	PF01 = W01 / VA01

Frequency Measurement

SyncA:	$2 \mathrm{~Hz}-5 \mathrm{kHz}$	Accuracy: 0.05%
SyncV:	$2 \mathrm{~Hz}-150 \mathrm{kHz}$	Accuracy: 0.05%
S_ExtV:	$2 \mathrm{~Hz}-150 \mathrm{kHz}$	Accuracy: 0.05%

S_ExtV is a TTL output for SyncA/V or a TTL input for S_ExtV \quad Sync for each phase

Measured \& Computed Values

Frequency
Freq =zero crossing of A, V, Ext; SYNC I, SYNC U, Ext; Accuracy 0.05\%

Energy Measurement

Wh, VAh, Varh, Ah, integration time. Add accuracy \% of values involved.
Reset sets all values to zero. Integration runs uninterrupted, also in the background.

Measured \& Computed Values			
Energy	Wh $=\mathrm{t}_{0}$ Pact $\cdot \mathrm{dt}$, active energy in Wh	Battery charge	Ah $=\mathrm{t}_{0}$ Arect $\cdot \mathrm{dt}$, is positive only
Apparent energy	VAh $=\mathrm{F}_{0}$ Papp $\cdot \mathrm{dt}$, use it for long term PF	Elapsed time	time $=\mathrm{t}_{0} \mathrm{dt}$, time in hours since RESET
Reactive energy	VAR $=\mathrm{H}_{0}$ Prea $\cdot \mathrm{dt}$, can be positive $/$ negative	Time	Accuracy $: 0.05 \%$

Harmonic Measurement

Frequency range of fundamental $3 \mathrm{~Hz}-15 \mathrm{kHz}$
Harmonics: V and $\mathrm{A}: 1-88$; W and phase angle 1-21
Accuracy: Fundamental ${ }^{11}$, use \% figures of $\mathrm{V}, \mathrm{A}, \mathrm{W}$

FFT averaging:
Set FFT ID $=0,1,2,3,4$ which corresponds to averaging over $4,16,64,256$, or 1024 periods.

Harmonic Display: Select button 'FFT Table' to view current-, voltage-, power-, impedance-, and phase harmonics 1-40. A single harmonic can be displayed by selecting A FFT, V FFT or W FFT. The whole range of harmonics can be read via interface.

Measured \& Computed Values

Magnitude impedance \quad Mag Z = V01 / A01 fundamental

Additional Computed Values

Accuracy: Add \% figures of values involved

65 values per phase
Rectified mean, VA, Var, impedance, distortion factor, power factors, motor- and transformer values, sums, ratios, analog inputs and -outputs, speed inputs, and more are continuously updated and ready for display or interface output.

1) Typical max. Error

Measured \& Computed Values

Sum1 of power	Sum1 $=$ Pact1 + Pact2 + Pact3; Power phase $1+2+3$	Ratio1 of power	Ratio1 $=$ Pact4 $/$ Pact1 + Pact2 + Pact3
Sum2 of power	Sum2 $=$ Pact1 + Pact2	Ratio2 of power	Ratio2 $=$ Pact3 $/$ Pact1 + Pact2
Sum3 of power	Sum3 $=$ Pact4 + Pact5 + Pact6; Power phase 4+5+6	Ratio3 of power	Ratio3 $=$ Pact2 $/$ Pact1
Sum4 of power	Sum4 $=$ Pact4 + Pact5	Ratio4 of power	Ratio4 $=$ Pact4 + Pact5 + Pact6 $/$ Pact1 + Pact2 + Pact3
Sum5 of power	Sum5 $=$ not used	Ratio5 of power	Ratio5 $=$ Pact6 $/$ Pact4 + Pact5
Sum6 of power	Sum6 $=$ not used	Ratio6 of power	Ratio6 $=$ Pact5 $/$ Pact4

Motor Measurement

Measured \& Computed Values from phase
1, phase 2, phase 3
Mechanical input power Mechanical output power Torque
Slip
Rotation per minute Efficiency

Pin = electric power applied to motor Pout $=$ Pin - Pin at no load in Watt (Loss) Torque $=$ Pout \cdot poles $1 / 4 \cdot \pi$ frequency 1 Slip $=1-$ fout $/$ fin rpm $=120 \cdot$ frequency $1 /$ poles 1 efficiency $=1-$ Pin at no load / Pin

Measured \& Computed Values from phase 4, phase 5, phase 6
Mechanical input power Mechanical output power Torque
Slip
Rotation per minute
Efficiency

Pin = electric power applied to motor Pout $=$ Pin - Pin at no load in Watt Torque $=$ Pout \cdot poles $/ 4 \cdot \pi$ •frequency 2 Slip $=1$ - fout $/$ fin
rpm $=120 \cdot$ frequency / poles
efficiency $=1-$ Pin at no load $/$ Pin

Transformer Measurement

Measured \& Computed Values from phase 1 and phase 2

Vrect, rms corrected	Vcorrected $=1.1107 \cdot$ Vrect	Loss resistance	Equivalent loss resistance $=$ Pact1 $/$ Arms 2
Corrected power	Corr power $=$ Pact $1 /(0.5+0.5 \cdot$ Vrms $/$ Vcorrected $)$	Loss inductance	Equivalent loss reactance $=$ Prea $1 /$ Arms 2
Loss factor Q	$\mathrm{Q}=\tan \mathrm{X} / \mathrm{R}$, where $\mathrm{Z}=\mathrm{R}+\mathrm{jX}$	Turn ratio	Turn ratio $=\mathrm{N} 2 / \mathrm{N} 1=$ Vrms $2 /$ Vrms 1 , no load

Analog Input / Output			
Analog Input		Analog Output	
4 Analog inputs (I1-I4)	$\pm 5 \mathrm{~V}, 100 \mathrm{k} \Omega$ input impedance, accuracy $0.2 \%^{1)}$	$\begin{aligned} & 12 \text { analog outputs } \\ & \text { (O1-O12) } \end{aligned}$	$\pm 5 \mathrm{~V}, 1 \mathrm{k} \Omega$ output impedance, accuracy $0.2 \%^{1)}$
2 analog inputs (I5-I6)	$\pm 10 \mathrm{~V}, 100 \mathrm{k} \Omega$ input impedance, accuracy $0.2 \%{ }^{1)}$		Update rate 0.5 sec . Arms, Vrms, W, VA, Var, PF,
2 TLL auto ranging speed	Accuracy $0.1 \%{ }^{11}$. Reading rate in Standard-Mode		Frequency, and Wh can be sent to the analog
inputs $20 \mathrm{~Hz}-150 \mathrm{kHz}$	0.5 sec , reading rate in Power Speed-Mode 20 ms Each input can be scaled 0.0001 up to 99999		outputs. In Logging- and Power Speed-Mode output1 is an actuator to Start/Stop ext. devices.
Scaling An1-An6	Individual analog scaling. Use pop-up number pad. Format 10.0.		
Scaling rpm1-rpm2	TTL freq1/rpm1 and freq2/rpm2 scaling. Use pop-up number pad. Format 2.0. For 180 pulses per turn, scaling $=1.0000$		

Four Measurina Functions

Standard	1 to 6 phase, measures all electrical values at 0.8 s updates or 100 ms updates.
Logging	Up to 48 values in 20 ms , or long time averaging up to 10 minutes.
Transient	Simultaneous $\mathrm{V}-, \mathrm{A}-, \mathrm{W}$-waves on 6 phases, time 0.25 to 16 seconds.
Power-Speed	Measures in 20 ms intervals $\mathrm{V}, \mathrm{A}, \mathrm{W}, \mathrm{VA}, \mathrm{Wh}, \mathrm{VAh}$, speed of rotating devices.

1) Typical max. Error

Saving and Recalling 108A Setting Configurations

Save your personal setting in S01, or $\mathbf{S 0 2}, \ldots$, , or $\mathbf{S 2 0}$. The 108A starts up in setting S01. With Load Setup you can change to your personal setting. If start up in your setting is required store it in $\mathbf{S 0 1}$.

Continuous Storing of Measurement Data

Select the storing interval ($1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}, \ldots$). Select storing location D01, or D02, \ldots, or D20. All values displayed on page 1 are stored at set time interval in EXCEL compatible format.

Servicing and Calibration

Servicing: Replacement amplifier boards from the factory are calibrated (no re-calibration is required). All other boards can simply be exchanged. Calibration: Enter calibration code, follow calibration instructions. Apply $60 \mathrm{~Hz}, 1.5 \mathrm{~mA}-20 \mathrm{~A}$, and $0.3 \mathrm{~V}-1000 \mathrm{~V}$. Calibration cycle 2 years.

General Technical Data

Dimensions	Metal housing $\mathrm{H} \times \mathrm{W} \times \mathrm{D} ; 148 \times 355 \times 335 \mathrm{~mm}$
Weight	Maximum 7kg, 6-phase
Display	TFT color display, $155 \times 94,800 \times 480$ pixels, 262k Colors, Wide viewing angle $(\mathrm{X}-\mathrm{Y}) 170^{\circ}$
Operation	By touch screen, wireless mouse or interface
Mains	$90-256 \mathrm{~V}, 47-63 \mathrm{~Hz}, 40 \mathrm{VA}$
Warm up time	25 minutes
Calibration cycle	2 years
Inputs	4 mm safety sockets, 3-pol Amphenol socket
Temperature range	Operation 2 to 32°, storage -10 to $50^{\circ} \mathrm{C}$
Standards	Electrical safety EN61010-1,1000V CAT II Emission IEC $61326-1$, class B Immunity IEC $61326-1$
Dielectric Strength	Line input to case: 1500 V ac Measuring inputs to case: 2500 V ac Measuring inputs to measuring inputs: 2500 V ac

4. Operating The Power Analyzer from the Front Panel

Apply line voltage 90 Vac to $264 \mathrm{Vac}, 47-63 \mathrm{~Hz}$, and turn on rear panel power switch. The Power Analyzer requires 30 seconds for start-up.
Common to all four measurement functions (Standard, Logging, Transient, and Power-Speed) the following actions are needed:

- Select current inputs (IN1A, IN5A, IN30A, SHUNT: 2 touches)
- Select current range, or AUTO ranging (2 touches)
- Select voltage range, or AUTO ranging (2 touches)
- Select measurement synchronization (Syncl, SyncU, Ext, 2 touches)
- Select measurement duration (2 touches)
- Select wave form on or off (2 touches)
- Select HOLD or RUN or coupling AC or DC+AC (1 touch)
- Select FFT-TABLE (harmonics of current, voltage, power and phase angle) of one phase (1 touch)
- Select FFT-BAR of one phase (1 touch)
- RESET charge, Wh, VAh, Varh, and time (1 touch)
- Select new display page $1,2,3,4$, (5) (1 touch), page (5) for harmonics
- Select different value on display line (2 touches)
- Select new measurement mode (2 touches)
- Select scaling A/V, Baud, GPIB address, Cycles, Transient ID, FFT-ID,
- Select suppress, time, save setup, load setup and scaling of analog inputs and frequency inputs. (Example Scaling I3: 2000.5 needs 9 touches).
- Select display of phase L1-L4 or L3-L6 (1 touch)

Important: It is possible to use individual current inputs, individual ranges, and individual synchronization on different phases for all measurement modes.

4.1 Operations in Standard Measure Mode

The Power Analyzer starts up in Standard Measure Mode as shown in Figure 4.1. The touch control buttons to the right and at the bottom set operating conditions, and the control buttons to the left set display quantities. The buttons along the top are used to select individual settings for every phase (current input, ranges, and synchronization). The buttons are controllable by a click of the mouse, or by a touch using the supplied pointer, or just using a finger.

Figure 4.1 Start-up configuration of Power Analyzer

Along the top of the display you find phase, current input, synchronization, voltage- and current range, and over (red) - and under (yellow) range indication.

For touch screen operation we highly recommend to use the mouse. An unintentional double click for critical operations, such as loading a new setting, may lead to stalling. Should this happen, you must restart the Power Analyzer (off / on).

4.1.1 Selecting Measure Mode

Touch Standard \rightarrow pop-up window

Touch desired Measurement Function

Standard	Default
Logging	
Transient	
P-Speed	Option

4.1.2 Selecting Current Inputs using same Inputs for all Phases

Touch IN 5A \rightarrow pop-up window

Touch desired current input

IN 1A	
IN 5A	
IN 30A	

4.1.3 SELECTING INDIVIDUAL CURRENT INPUTS PER PHASE

Touch the phase button L1 along the top of the display. The button turns to green, indicating to be ready for phase L1 current input- and range selection

Touch IN 5A choose the input from pop-up Window

IN 1A
IN 5A
IN 30A
SHUNT

We recommend, as a next step, to also select the current range for phase L1.
Touch AUTO A Select from the pop-up window the desired range or auto ranging

1A Input	5A Input	30A Input	Shunt Input
1.5mA	15mA	1A	60 mV
5 mA	50 mA	3A	180mV
15 mA	150mA	10A	600 mV
50mA	500mA	30A	1.8 V
150mA	1.5A	100A	6 V
500mA	5A	AUTO A	AUTO A
1.5A	15A		
AUTO A	AUTO A		

Continue above process to set the current inputs of other phases.

4.1.4 Selecting Current Range using same range for all phases

The available ranges depend on the current input selected.
IN 1A: $\quad 1.5 \mathrm{~mA}, 5 \mathrm{~mA}, 15 \mathrm{~mA}, 50 \mathrm{~mA}, 150 \mathrm{~mA}, 500 \mathrm{~mA}, 1.5 \mathrm{~A}$.
IN 5A: $\quad 15 \mathrm{~mA}, 50 \mathrm{~mA}, 150 \mathrm{~mA}, 500 \mathrm{~mA}, 1.5 \mathrm{~A}, 5 \mathrm{~A}, 15 \mathrm{~A}$.
IN 30A: $1 \mathrm{~A}, 3 \mathrm{~A}, 10 \mathrm{~A}, 30 \mathrm{~A}, 100 \mathrm{~A}$.
SHUNT: $\quad 60 \mathrm{mV}, 180 \mathrm{mV}, 600 \mathrm{mV}, 2 \mathrm{~V}, 6 \mathrm{~V}$. Shunt sensitivity: $1 \mathrm{~A} / 60 \mathrm{mV}$. Using a current clamp with output $1 \mathrm{mV} / \mathrm{A}$ enter scaling factor 60 .

Touch AUTO A \rightarrow pop-up window

15 mA
50 mA
150 mA
500 mA
1.5 A
5 A
15 A
AUTO A

Touch desired current range. Power Analyzer is now in manual current ranging. "AUTO A" selects automatic current ranging.

NOTE: If none of the phase buttons is green (phase selected), the range selection is valid for all phases. If one phase button is green the range selection is valid for the selected phase.

4.1.5 Selecting Voltage Range using same range for all phases

Touch AUTO V \rightarrow pop-up window

0.3 V
1 V
3 V
10 V
30 V
100 V
300 V
1000 V
AUTO V

Touch desired voltage range. Power Analyzer is now in manual voltage ranging. "AUTO V" selects automatic voltage ranging.

NOTE: Individual voltage range selection for every phase is possible. Touch the phase button along the top of the display, touch AUTO V and select from pop-up window desired voltage range.

4.1.6 Selecting Measurement Synchronization using same synchroniZATION FOR ALL PHASES

Touch Sync A \rightarrow pop-up window

Sync A	$2 \mathrm{~Hz}-5 \mathrm{kHz}$
Sync V	$2 \mathrm{~Hz}-150 \mathrm{kHz}$
S_Ext V	$2 \mathrm{~Hz}-150 \mathrm{kHz}$

Touch desired measurement synchronization. For precise AC-measurements at low frequencies a periodic wave form is required. If you are measuring voltages only, you must select Sync V . If you are measuring current only, you must select Sync A.

NOTE: Individual synchronization for every phase is possible. Touch the phase button along the top of the display, touch SYNC A and select from pop-up window desired synchronization.

4.1.7 Selecting Averaging Time

Touch $1 \mathrm{~s} \rightarrow$ pop-up window

Touch desired averaging time. Arms, Arect, Amean, Vrms, Vrect, Vmean, W, VA, Var, and frequency are averaged over selected time.

Display update occurs at 0.8 sec intervals also in the "Fast" mode.
Fast: New data are available at 100 ms intervals. "Fast" mode can be used to read new data via interface at the rate of 10 datasets per second.

4.1.8 Selecting Display Pages

Touch PAGE $1 \rightarrow$ increments to PAGE 2
Default: Page 1
\rightarrow Touch PAGE $2 \rightarrow$ increments to PAGE 3
\rightarrow Touch PAGE $3 \rightarrow$ increments to PAGE 4
\rightarrow Touch PAGE $4 \rightarrow$ resets to PAGE 1
Every PAGE displays 8 user programmable measurement quantities. Programmed quantities on a display line are valid for all phases L1 ... L6.

4.1.9 Selecting Wave Forms (Graph)

Touch WAVE \rightarrow pop-up window for 3-phase instrument.

Wave 1
Wave 2
Wave 3
-
-
OFF

Touch desired phase L1, L2, or L3. Touch OFF to exit wave display.
The lower 3/8 of the display shows current- (blue), voltage- (black), and power waveforms (red) of selected phase. For a consistent display a periodic zero crossing is required.

NOTE: When displaying waveform, the button "FFT Table" is greyed (disabled).

4.1.10 Selecting Display L1 to L4 and L3 to L6

Power Analyzers for 5-, or 6 phases have the choice to select display of L1 to L4 or L3 to L6. Touch L1-L4. The button toggles to L3-L6.

4.1.11 Selecting FFT Table and FFT Bar Graph

Touch FFT Table. The button will toggle to FFT L1. At the same time the button FFT Bar is activated which lets you select the bar graph of phase L1.

This action will display harmonics of current, voltage, power, and phase on 5 pages (PAGE H1, H2, H3, H4, H5). Harmonics 1-40 of current and voltage, and harmonics 1-20 for power, and phase angle. Phase angle is displayed in a range $\pm 180^{\circ}$.
Limitation: The maximum fundamental frequency for harmonic computation is 15 kHz .
The minimum fundamental frequency is 5 Hz
Touch FFT Bar. This displays harmonic bar graphs in percent of fundamental of current, voltage, and power. Touching FFT Bar a second time turns off the bar graph.

Touching FFT L1 will increment it to FFT L2, to FFT L3 and so on up to the number of phases installed and will return to FFT Table

4.1.12 Selecting AC or DC+AC-Coupling

Touch $A C+D C$, the button toggles to AC.
AC: \quad Arms, Vrms, W, and VA are measured excluding DC. Amean and Vmean are independent of $A C$, or $A C+D C$.

DC+AC: Arms, Vrms, W, and VA are measured including DC.
Reminder: The rms value of a 50 Hz component and a DC component is equal to the square root of (50 Hz component squared +DC component squared).

4.1.13 Selecting Display RUN and Display HOLD

Touch RUN, the button toggles to HOLD.
The display update is halted. In the background the continuous measurement process goes on. This guarantees correct energy- and charge measurements (Wh, VAh, Varh, Ah).
If USB memory stick is inserted, measurement data on hold are also stored on memory stick with filename 108A_data_HOLD.

4.1.14 Resetting Energy

Touch Reset Wh. This will reset all energies, charge, and time (Wh, VAh, Varh, Ah, time).

4.1.15 Selecting Display Quantities

Touch one of the 8 buttons to the left of the display. This pops-up the value selection table (Figure 4.2). Touch the button of the desired quantity. This will replace the previously displayed quantity with the new one.

CURRENT	Arms	Amean	Arect	A01	Ah	HELP				
	Amax	A CF	A FF	A THD1	A THD2	A FFT				
	Vrms	Vmean	Vrect	V01	Vptp	Vmin				
	Vmax	V CF	V FF	V THD1	V THD2	V FFT				
POWER	Watt	VA	VAR	W01	VA01	Q1				
	D	PF	PF01	Wh	VAh	W FFT				
	Freq	IZ01\|	Phi01	Time	VARh	LTL 1- 3				
SpecVal 1	S1\|S2	S3	S4\|S5	S6	R1\|R2	R3	R4\|R5	R6	M1\| 1-3 -	M1\| 4-6
SpecVal 2	T1\|T2	T3	T4\|T5	T6	A1\|A2	A3	A4\|A5	A6	m2\| 1-3	m2\| 4-6

Figure 4.2 Value Selection Table of all available quantities which can be displayed. Touching "A FFT", "V FFT", or "W FFT" lets you select Harmonics 2 to 13. Touching "HELP" pops up the help window explaining the special values.

Exception 1: \quad Touching A FFT, V FFT, or W FFT will activate a pop-up window from which you can select one out of the first 13 harmonics.

Exception 2: Touching one of the special values at the bottom of the value selection table, such as $\mathrm{S} 1|\mathrm{~S} 2| \mathrm{S} 3$, will always display 3 values, some of them may be zero.

Special values are:

| SUMS: | S1\|S2|S3, S4|S5|S6; | Definition Table 3.2 |
| :--- | :--- | :--- |
| RATIOS: | R1\|R2|R3, R4|R5|R6; | Definition Table 3.2 |
| MOTOR1: | M1\|1-3, M1|4-6; | Definition Table 3.2 |
| TRANSFORMER: | T1\|T2|T3, T4|T5|T6; | Definition Table 3.2 |
| ANALOG: | A1\|A2|A3, A4|A5|A6; | Definition Table 3.2 |
| MOTOR2: | m2\|1-3, m2|4-6; | Definition Table 3.2 |

The HELP button defines the display quantities in a pop-up window. Figure 4.3 Definition of Special Values.

Figure 4.3 Help Table defining sums, ratios, motor1- and motor2 values, transformer values, analog inputs, and harmonic distortion.
4.1.16 MOTOR TESting: Motor 1 values from phase 1, 2, and 3. Motor 2 values form phase 4, 5, and 6.

A three phase Power Analyzer calculates 6 motor values (motor 1). To display these values select M1|1-3 on one display line and M1|4-6 on the next display line. Speed in rpm must be entered via analog input-output option at speed $1 /$ freq 1 input terminal (Section 7). A rotating disc with 180 divisions yields rpm (rotation per minute).

A disc with 90 divisions requires multiplication by 2 to obtain true rpm. An external torque transducer can be applied to one of the 6 analog inputs and can be displayed by selecting either $\mathrm{A} 1|\mathrm{~A} 2| \mathrm{A} 3$ or $\mathrm{A} 4|\mathrm{~A} 5| \mathrm{A} 6$ from the value selections table. Scaling for analog inputs and rpm, setting the number of motor poles, and storing idle motor power can be done via SETUP or via Interface.

Using the Computer Operating Software the motor settings are basically using the following Interface commands:

Write number poles=6:	Command (Commands Section 5) acq:nr_pole1 6 \rightarrow CR LF
Write scaling rpm1 (2.0)	Dis:rpm_sc1 2.0 \rightarrow CR LF
Write scaling torque 1 10.1 (using analog input 1)	Dis:an_sc1 10.1 \rightarrow CR LF
Motor 1 is running at no load. Send the command. Power loss of motor 1 is stored and from now on the motor 1 out- put power is reduced by this loss.	Comp:mot1_Loss? 6 values are sent from the Power Analyzer to the PC. From now on the motor 1 output power is reduced by motor 1 loss.

A six phase Power Analyzer calculates motor values of two motors simultaneously. Motor 1 values from phase 1, 2, and 3. Motor 2 values from phase 4,5 , and 6 . Display motor 2 values by selecting $m 1 \mid 1-3$ and $m 1 \mid 4-6$ in the value selection table. Use the speed $2 /$ freq 2 input for motor 2 rpm determination; a disc with 180 divisions yields rpm, needs no rpm scaling.
An external torque transducer for motor 2 could be applied to analog input 2, or any other of the 6 analog inputs.
Just like setting the parameters of motor 1 you must enter parameters for motor 2.
Write number poles $=4$: acq:nr_pole2 $4 \rightarrow$ CR LF
Write scaling rpm 2 (4.0) : dis:rpm_sc2 $4.0 \rightarrow$ CR LF
Write scaling torque 2 (8.5) : dis:an_sc2 $8.5 \rightarrow$ CR LF
Motor2 is running at no load. Comp:mot2_loss?
Send the command. Power
Loss of motor2 is stored
And from this time on motor2 output power is
Reduced by motor2 loss

6 Motor Values are returned to the PC. From this time on motor2 output power is reduced by motor2 loss.

For more information on motor testing please read Section 10.

4.1.17 Selecting SETUP

Touch SETUP. The pop-up window, shown in Figure 4.4 lets you select the following instrument parameters:

Figure 4.4 Setup Window for selecting instrument parameters
Scaling 11-I6: Individual current scaling factors of every phase. Use pop-up number pad. Format 2000.8.

Scaling U1-U6: Individual voltage scaling factors of every phase. Use pop-up number pad. Format 9.9427.

Scaling An1-An6: Individual analog scaling. Use pop-up number pad. Format 10.0.
Note: An6 also scales the analog outputs of power at low power factor.
Scaling rpm1-rpm2: Individual TTL freq1/rpm1 and freq2/rpm2 scaling. Use pop-up number pad. Format 2.0.

Cycles:

Suppress: Toggles on and off. If on, small values of Arms, Vrms, and Watt are set to 0 .

FFT ID: \quad Set to $0,1,2,3,4$. Corresponds to FFT averaging over 4, 16, 64, 256 or 1024 cycles. FFT_ID=3 corresponds to 1.5 sec averaging.
\square Line1... \square Line8: Serves two functions: If deselected, display line is off. If selected display line is on and in case data storing is also on, the values are stored in internal memory D01, D02, ..., D20. If USB memory stick is inserted, measurement data are also stored on memory stick 108A_data_01, 108A_data_02, ..., 108A_data_20.

Store Data:	Select the desired storing interval in seconds. Press green "Store Data" button and select D01...D20. The measurement data displayed on page 1 of all phases are stored in the selected data file Dxy (D01... D20) and on the memory stick. Average of Arms and Vrms are not stored if selected.

Stop Storage: Press "Stop Storage" press "Standard", select "Standard" in submenu.
AVG ON: \quad The average of 3 rms currents (phase 1 to 3 or phase 4 to 6) and 3 rms voltages are displayed in red digits when AVG ON is checked. This is valid only for values displayed on page 1 on line 1 and line 2

Transient ID: Set to 1, 2, .. 7. The transient ID determines the measurement duration after start.

Transient ID

1
2
3
4
5
6
7

Measurement duration

0.25 seconds
0.5 seconds default

1 second
2 seconds
4 seconds
8 seconds
16 seconds

Hours (Wh): If selected "OFF" energy computation runs continuously. Select "ON" and set time in hours for Wh, VAh, Varh, and Ah summation. Touch Reset Wh button to start the energy summation. When time is reached the energy display values are held at the final values.

Poles M1/M2: Set number of motor 1 poles and motor 2 poles, minimum 2, maximum 98.

Store Idle W: Store idle power motor 1 or motor 2 . When idle power has been stored, motor output power (and torque) is computed from motor input power idle power (Store M1 Loss / Store M2 Loss).

Baud rate: \quad Set Baud ID to 0, 1, 2, 3, 4, 5, 6,7 . The Baud ID corresponds to:

Baud ID
0
1
2
3
4

5

6
7

Baud Rate
9600
19200
38400
57600
115200 default
230400 can be
460800 used for
921600 USB interface

GPIB addr: Set 1 to 30 . Use pop-up number pad.

Save Setup: Give the setting your personal number. If you want that the Power Analyzer starts up in your preferred configuration you must store the setting in S01.

Load Setup: Recall your setting number

Calibration: Enter your personal code if okay \longrightarrow Current Cal on
Voltage Cal on

4.2 Operations in Logging Measure Mode

- Touch Standard \rightarrow pop-up window

Standard
Logging
Transient
P-Speed

Touch Logging to switch to Logging function Measure Mode. The logging mode configures the display, line 1 to line 8, as follows: Frequency, Arms, Vrms, W, PF, VA, Wh, and VAh. These values are fixed; there is no access to the value selection table.

Caution: Before touching START a valid synchronization signal must be applied to all inputs of the Power Analyzer. Not doing so the Power Analyzer may stall. Turn power off and restart again.

Example: Logging function is used on a 6-Phase Power Analyzer to measure a 3phase motor. Current synchronization is used.

Connect current I1 in series with I4, I2 in series with I5, and I3 in series with I6 to synchronize all 6 phases at the same speed. For data analysis use data from phase 1, 2, and 3 only.

4.2.1 Valid Synchronization

A valid synchronization for Logging is current or voltage, or both applied to every phase of the Power Analyzer. The synchronization frequency must be in the range 5 Hz to 2 kHz for current (Sync A), 5 Hz to 10 kHz for voltage (Sync V).

DC-current and DC-voltage can be measured too (DC-motors). For DC use an external TTL synchronization (5 Hz to 10 kHz), apply it to the rear panel Sync1, Sync2, ... Sync6 inputs and select "S_Ext V".

Example: 2-phase Power Analyzer: Connect Sync1 and Sync2 to TTL-signal.
3-phase Power Analyzer: Connect Sync1, Sync2, and Sync3 to TTL-signal.

4.2.2 Selecting CYCLES

Please note that CYCLES is set in the SETUP menu accessible in the STANDARD mode.
Touch SETUP. In the pop-up window Figure 4.4
Touch CYCLES. Use the pop-up number pad. Enter the number of Cycles, minimum 1, maximum 32000.

Hint: Number of cycles divided by applied frequency must be greater than 10ms Also, use a high RS232 baud rate for fast data transmission.

- In Logging Measure Mode 8 values per phase are measured. These are: frequency, Arms, Vrms, W, PF, VA, Wh, and VA. The buttons to the left of the display are deactivated (greyed). There is no access to the value selection table.
- Logging can be started from the display or from the computer interface.

4.2.3 What has to be observed when using Logging?

- A valid synchronization signal must be applied before pressing START or before sending the interface command acq:go.
- Cycles divided by frequency of synchronization determines the time for one measurement.

Example: "Cycles" set to 1 , frequency of synchronization is $50 \mathrm{~Hz}(1 / 50 \mathrm{~Hz}=0.02 \mathrm{sec})$. Time interval for one measurement $=0.02 \mathrm{sec}$. If "cycles" is set to 30000 the time for one measurement is $30000 \cdot 0.02$ sec. $=10$ minutes.

- To read Logging data from the 108A via Interface use commands COMP:LOG1? or COMP:LOG2? (Table 5.4).
- For fast data acquisition use manual ranging. Select ranges such that no severe overloads occur.
- To transmit data from a 6-phase Power Analyzer via RS232 to a PC within 20ms (time interval for measurement) the Baud Rate of 460800 Baud must be selected or use the IEEE-Interface.
- To catch data from a short term transient process we recommend: Start Logging and slightly delayed start the process.
- Measurements on frequency inverters must be synchronized to current or to an external frequency. Do not use synchronization to voltage.
- In Logging Measure Mode the display updates in 0.8 second intervals.

Figure 4.5: 108A display in Logging Mode.

4.3 Operations in Transient Measure Mode

- Touch Standard \rightarrow pop-up window

Standard
Logging
Transient
P-Speed

Touch Transient to switch to the Transient Measure Mode

Please note that TRANSIENT ID is set in the SETUP menu accessible in the STANDARD mode.
Before pressing START synchronization to all phases of the Power Analyzer is required.

- Touch SETUP \rightarrow touch Transient ID. Select 1, 2, 3, 4, 5, 6 or 7

Transient ID	Transient Measurement Duration	
1	0.25 seconds	
2	0.5 seconds	Default
3	1 second	
4	2 seconds	
5	4 seconds	
6	8 seconds	
7	16 seconds	

4.3.1 What is measured in Transient Measure Mode?

Upon touching the START button all phases start measurement at the same time. The start delay between different phases is less than 1 microsecond.
The duration of measurement is determined by the SETUP variable "Transient ID". Default Transient ID $=2$ corresponds to 0.5 seconds measurement time. If required, you can scale currents and voltages.

Every phase samples current, voltage, and power. The time relation between phases is precisely maintained. When measurement is done, all wave forms are displayed. Touching a zoom sector allows for enlargement of up to 256 times. Select $L 4$ to $L 6$ to display wave forms of phases L4, L5, L6.
Touch BACK to return to the original wave forms.

4.3.2 Two Ways To Use Transient Measure Mode

- Quick viewing of wave forms in Standard Measure Mode.

Touch Standard, touch Transient, touch START.

Assuming you are measuring in a $50 \mathrm{~Hz} / 60 \mathrm{~Hz} 3$-phase system you obtain on one pitch all wave forms. Zoom once to obtain 5 to 6 periods of all wave forms in precise phase relation to each other. This is assuming you have selected Transient ID $=2$.
If you wish zoom more to view details.
Touch Transient, touch Standard to return to previous measure mode.

- View Wave Forms of System in Transient State

The system can be 1 to 6 phase:

- 3 phase or multi-phase rotating device being started or being loaded.
- DC motors starting or being loaded.
- Accelerating or recuperating electric cars.
- Start-up behavior of large electromechanical system.
- For this kind of measurements you must use broad band current sensors and must select AC+DC coupling of the Power Analyzer.
- Select Transient ID that fits best to your measurement.
- You must select proper current- and voltage ranges, to avoid serious overloads.
- Start the transient measurement then start your system.

Figure 4.6 Shows the transient display of a 3-phase Power Analyzer.
The three values to the left are rms current, rms voltage, and average power of the displayed wave forms.

4.4 Basics Of Power-Speed Measure Mode (Option)

Power-Speed measurements are performed on single- and three-phase AC- or DC systems. The external speed input is applied to TTL-Speed1 of the analog input - output option. If not installed the speed will be zero.
Use an optical speed sensor with a rotating disc of 180 divisions. Apply its TTL-output to the speed1 input to obtain speed values in rpm (rotations per minute). The range of frequency of the TTL speed 1 input is 20 Hz to 150 kHz . Maximum rpm with a disc of 180 divisions is $(150000 / 180) 60=50000 \mathrm{rpm}$.

4.4.1 What Is Measured In Power-Speed Measure Mode

The Power Analyzer input can be DC from a battery, or AC from power line, or AC from frequency inverter. Upon START the Power Analyzer measures in 20 ms time intervals Arms, Vrms, Wtotal, VAtotal, Whtotal, VAhtotal, and rotating speed in rpm (rotation per minute). Where Arms and Vrms are averages of 3 phases, of the 20 ms measurement interval.

When the START button is touched analog output 1 is set 20 ms later from 0 V to 5 V . It can be used to activate the system under test. Datasets are stored in internal memory.

Upon pressing STOP measured values versus time are displayed. Maximum duration of power - speed measurement is 10.7 seconds, amounting to 535 datasets in 20 ms time increments. This time is sufficient to monitor the start of an electric car. Values such as current peaks, voltage dips, consumed energy, maximum speed, and maximum acceleration are parameters of interest to the manufacturer.

If you insert a memory stick on the rear panel the complete data set is displayed on the 108A display and also stored on the memory stick for off-line analysis in Excel.

4.4.2 Operations in Power-Speed Measure Mode

- Touch $\overline{\text { Standard }} \rightarrow$ pop-up window

Standard
Logging
Transient
P-Speed

Touch P-Speed to switch to the Power-Speed Measure Mode.

- Correction factors for single phase systems. Multiply Vrms and Arms by 3.
- Set Voltage range according to supply voltage applied to load under test Touch AUTO V \rightarrow pop-up window

0.3 V
1 V
3 V
10 V
30 V
100 V
300 V
1000 V
AUTO V

Touch appropriate voltage range (Do not use AUTO V).

- Set current input. You must set the current range based on the estimated maximum rms current. Many applications experience currents larger than 40A. If so, use external current sensors capable of transmitting DC currents.

Example: Estimated current is 100A. A 3-phase current sensor module 0-100A, DC to 100 kHz , with output 50 mA at 100A primary current is used. Select Current Input In1A and range 50mA.

Touch IN 5A \rightarrow pop-up window

IN 1A
IN 5A
IN 30A
SHUNT

Touch IN 1A. Use the 1A-adapter. Connect it to the rear panel 3 pole socket.

- Set current range

Touch AUTO A \rightarrow pop-up window

1.5 mA
5 mA
15 mA
50 mA
150 mA
500 mA
1.5 A
AUTO A

Touch 50 mA to select desired current range. (Do not use AUTO A)

- Enter the SETUP window in standard measure mode. Set phase 1,2 , and 3 scaling factors by entering the scaling factor written on the 3-phase current sensor module
- Touch START and turn on the system under test.

Alternatively start your system by using the 0 to +5 V signal of analog output1.

- After system reached steady state

Touch RUN \rightarrow returns to STOP and Power Analyzer will plot seven functions versus time. Four functions at the top (voltage, current, power, speed), and three functions at the bottom of the display (energy, apparent power, apparent energy).
If you have inserted a memory stick on the rear panel, all measurement data are also stored on the memory stick for off-line analysis.

- The left side of the display shows maximum values of Arms, power, energy, rpm, Vrms, Wh, and Vah during the run.
- All data sets are written to the USB memory stick for off-line analysis.

Figure 4.7 Graphs of Current, Voltage, Power, Apparent Power, Energy, Apparent Energy and rotating speed versus time.

5. Operating The Power Analyzer Using A Computer Interface

The following interfaces are available:

- USB for wireless mouse
- IEEE-488 on rear panel using the Computer Interface Command set.
- RS232 on rear panel using Computer Interface Command set.
- USB on rear panel using Computer Interface Command set.
- USB memory stick for measurement data storage, or downloading 108A software update.
- Ethernet interface on rear panel using Interface Command set.
- 6 analog inputs and two TTL inputs $0-150 \mathrm{kHz}$ for external transducers.

5.1 What Has To Be Observed When Using An Interface

The RS232 cable must be one-to-one connected. Use shielded cables.
Keep interface cables at least 10 cm from Power Analyzer current- and voltage input cables. Current- and voltage transients may couple into interface cables and can cause communication errors or even failure.

Every command must be terminated with CRLF (carriage return, line feed) or with EOI (end or identify) using IEEE-488.

5.2 What Has To Be Observed When Using The Interface Command Set

- All commands listed in the table are assuming that a 6 phase Power Analyzer is used and thus PH_START = 1 and PH_END=6. If you are using a 3-Phase Power Analyzer Ph_START=1 and PH_END=3.
- In response to the command VOLT:MEAN?CRLF the 6 phase instrument sends Vmean of six phases, and the 3 phase instrument sends Vmean of three phases. Every value consists of 8 ASCII characters, e.g. -999.58 m . The string for a 3 phase instrument could look like this:

VOLT:MEAN?CRLF $\rightarrow 999.58 \mathrm{~m}$ 200.01m-1.0008 CRLF (26 ASCII characters).
The string length is 24 characters followed by the terminators CR (carriage return) LF (line feed).

* One or several Control Commands marked with * must be terminated with the control command DISplay:UPDATE. This assures that changes are transferred to the display processor to also update the display panel.

Suggestion: Send first all required control commands, such as CURRent:SC1 <R>, ACQuire:AUTO_V, ACQuire:INput, etc. one after the other; when done, send DISplay:UPDATE to transfer all changes to the display processor.

- The capital letters in the command list are mandatory. They can be sent upper case or lower case. The lower case letters in the command set can be added if desired.
- $\langle\mathrm{R}\rangle=$ decimal number, e.g. 2000.5. It follows the command with one space.
- $\langle N\rangle=$ integer number, e.g. 32000 . It follows the command with one space.
- Every command must be terminated with CR/LF (carriage return / line feed).
- Query commands are terminated by a question mark and CR/LF. The Power Analyzer returns measurement values.

Example: volt:rms?CRLF returns rms voltages of all phases. curr:sc1?CRLF returns scaling factor phase 1.

The question mark follows the command without space

- Set commands. Examples of set commands:

CURR:SC3 <R>; CURR:SC3 2000.5CRLF, sets current scaling factor phase 3 to 2000.5. There is one space between SC3 and 2000.5.

FORM:PH_END <N> FORM:PH_END 3CRLF, sets phase end to 3 .
If you are using a 6-phase Power Analyzer the query volt:rms? returns 3 voltages phase 1, 2, and 3 .

- DISP:BATCH command is used to configure up to 4 pages (32 lines) of the display in a single batch. The following example shows how to reconfigure the first 6 lines on page 1 .

DISP:BATCH A02A03A04A36A06A83CRLF. This command reconfigures the first 6 lines of the display page 1. The batch values of all displayable quantities you find in tables 3.1 and A83 you find in table 3.2

A02 rectified mean current on display line 1
A03
A04
A36
A06 rms voltage, DC-voltage,
on display line 2
on display line 3

A83 ratio $1=$ Pact2 $/$ Pact1 in display column 1, line 6
ratio $2=($ Pact1 + Pact2) $/$ Pact3 in display column 2, line 6
ratio $3=($ Pact3 + Pact4) $/($ Pact1 + Pact2 $)$ in display column 3, line 6

Maximum 32 batch values Axy can be sent. Using Table 3.2 sums, ratios, motor values, transformer values, analog inputs, and frequency inputs can be displayed.

- Composite commands Table 5.1 using a 3 Phase Power Analyzer.

COMP:CMP1? returns: 3 Vrms ? 3 Arms, and $3 x W$, terminated with CRLF. The data string is: Vrms1, Vrms2, Vrms3, Arms1, Arms2, Arms3, W1, W2, W3, CRLF. Where Vrms1 = voltage phase 1, etc. The string length is $9 \times 8+2=74$ ascii characters.

COMP:CMP2? returns: $3 \mathrm{Vrms}, 3$ Arms, $3 \mathrm{~W}, 3 \mathrm{VA}, 3 \mathrm{PF}, 3 \mathrm{~Wh}, 3$ elapsed time.
Data string length $=21 \cdot 8+2=170$ ascii characters.
COMP:CMP3? 3 V1, 3 A1, 3 W1, 3VA1, 3 PF1, 3 Z1, 3 Phi1. V1, ... Phi1 are FFT-values of the fundamental frequency.

COMP:DSP1? returns the displayed values of display line 1, 2, 3, and 4 of page 1.
For a 3-phase instrument there will be 12 quantities.
For a 6 -phase instrument there will be 24 quantities.
COMP:SUMS? returns SUM1, SUM2, SUM3, SUM4, SUM5, and SUM6 defined in table 3.2. Note: SUM4, SUM5, and SUM6 are zero when a 3-phase power Analyzer is used.

COMP:RATIO? returns 6 ratios, these ratios define efficiencies. Use the defined ratios in table 3.2 and hook up the Power Analyzer accordingly.

Example: ratio $1=$ Pact2 / Pact1. It requires connecting the system input to phase 1 and the system output to phase 2.

COMP:MOTOR1?
Returns 6 motor1 values from connection to phase 1, 2, 3.
COMP:MOTOR2?
Returns 6 motor2 values from connection to phase 4, 5, 6 .
COMP:MOT1_Loss? returns 6 motor values when motor1 is idling. It stores motor loss and is then used in command COMP:MOTOR1? To calculate motor output power on the drive shaft.

COMP:MOT2_Loss?
returns 6 motor values when motor2 is idling. It stores motor loss and is then used in command COMP:MOTOR2? To calculate motor output power on the drive shaft

COMP:TRAFO? returns 6 transformer values from phase 1 and phase 2 at idle and short circuit.

COMP:ANIN? returns the values of 6 analog inputs. $4 x \pm 5 \mathrm{~V}$ and $2 x \pm 10 \mathrm{~V}$ inputs.
COMP:VLTL?
returns 6 line to line voltages according to definition at end of table 3.2.

5.3 Computer Interface Command Set

Throughout the command set tables it is assumed a 6 phase Power Analyzer is used. If you are using a 3 phase instrument " $6 x$ " must be replaced by " $3 x$ ".
The default for ph_start=1 (Table 5.7). The default of ph_end is equal the number of phases installed in your instrument.

Example: You are using a 6 phase Power Analyzer. After start-up you send the command: comp:cmp1?

In return you receive $6 x$ Vrms, $6 x$ Arms, and $6 x \mathrm{~W}$; measurement values from phase $1,2, \ldots, 6$. If you send the command "form: ph_start 4" the Power Analyzer will return to the command "comp:cmp1?" 3x Vrms, 3x Arms, and 3x W; measurement values from phase 4, 5, and 6.
5.4 COMPOSITE COMMANDS, read several quantities with one command.

Table 5.1 composite commands

Command	Output for a 6 phase instrument with PH_START=1, PH_END=6
COMPose:CMP1?	6 x Vrms, 6 x Arms, 6 x Watt, phase 1 value first
COMPose:CMP2?	6x Vrms, 6x Arms, 6x W, 6x VA, 6x PF, 6x Wh, 6x time
COMPose:CMP3?	6x Fundamental V1, A1, W1, VA1, PF1, Z1, Phi1
COMPose:CMP4?	$6 \mathrm{~Wh}, \mathrm{VAh}, \mathrm{Varh}, \mathrm{Ah}$, time since RESET
COMPose:DSP1?	$6 x$ Display value line 1, $6 x$ line $2,6 x$ line $3,6 x$ line 4 of page 1
COMPose:DSP2?	$6 x$ Display value line $5,6 x$ line $6,6 x$ line $7,6 x$ line 8 of page 1
COMPose:SUMS?	1x SUM1, 1x SUM2, 1x SUM3, 1x SUM4, 1x SUM5, 1x SUM6 (table 3.2)
COMPose:RATIO?	1x Ratio1, 1x Ratio2, 1x Ratio3, 1x Ratio4, 1x Ratio5, 1x Ratio 6
COMPose:MOTOR1?	1x Winput, 1x Woutput, 1x Torque, 1x Slip, 1x Speed, 1x Efficiency
COMPose:MOTOR2?	1x Winput, 1x Woutput, 1x Torque, 1x Slip, 1x Speed, 1x Efficiency
COMPose:MOT1_Loss?	Stores motor 1 power consumed without load. Output 6 motor values.
COMPose:MOT2_Loss?	Stores motor2 power consumed without load. Output 6 motor values.
COMPose:TRAFO?	1x Vrect x1.11, Wcorrected, Qfactor, Reqiv, Xeqivalent, n2/n1
COMPose:ANIN?	4 x Analog input $\pm 5 \mathrm{~V}, 2 \mathrm{x}$ Analog input $\pm 10 \mathrm{~V}$
COMPose:VLTL?	$6 x$ voltage line to line (Table 3.2)
COMPose:LOG1?	6 x Arms, 6 x Vrms, 6 xW , 6xPF; reads data in Logging mode
COMPose:LOG2?	6x frequ, 6xArm, 6xVrms, 6xW, 6xPF,6xWh, 6x VAh

5.5 Reading voltages, reading and writing voltage scale factors

Table 5.2 Voltages Reading Commands

VOLTage:RMS?	6 x Vrms (root mean square), phase 1 value first.
VOLTage:FUND?	6x fundamental of voltage (V1)
VOLTage:RECT?	6 x Vrect (rectified mean of voltage)
VOLTage:MEAN?	$6 x$ Vmean (is valid also when AC coupling is used)
VOLTage:MIN?	6x minimum voltage
VOLTage:MAX?	6x maximum voltage
VOLTage:PEAK?	6x peak to peak voltage
VOLTage:FFTL1?	Harmonics L1: V1, V2, ..., V40. Can be changed by altering FFT_START, FFT_END (max. 88)
VOLTage:FFTL2?	Harmonics L2: V1, V2, ..., V40. Can be changed by altering FFT_START, FFT_END (max. 88)
VOLTage:FFTL3?	Harmonics L3: V1, V2, ..., V40. Can be changed by altering FFT_START, FFT_END (max. 88)
VOLTage:FFTL4?	Harmonics L4: V1, V2, ..., V40. Can be changed by altering FFT_START, FFT_END (max. 88)
VOLTage:FFTL5?	Harmonics L5: V1, V2, ..., V40. Can be changed by altering FFT_START, FFT_END (max. 88)
VOLTage:FFTL6?	Harmonics L6: V1, V2, ..., V40. Can be changed by altering FFT_START, FFT_END (max. 88)
VOLTage:THD1?	6 x THD1 $=\left(\mathrm{Vrms}{ }^{2}-\mathrm{V}^{2}\right)^{1 / 2} / \mathrm{Vrms}$. Use it for frequency inverter.
VOLTage:THD2?	6 x THD2 $=\Sigma\left(\mathrm{Vn}^{2}\right)^{1 / 2} / \mathrm{Vrms}, \mathrm{n}=2-40$.
VOLTage:CREST?	6x Voltage Crest Factor
VOLTage:FORM?	6x Voltage Form Factor
VOLTage:CURVEL1?	512 samples of wave L1. Each sample 3 ascii numbers centered around 500 ± 255.
VOLTage:CURVEL2?	512 samples of wave L2. Each sample 3 ascii numbers centered around 500 ± 255.
VOLTage:CURVEL3?	512 samples of wave L3. Each sample 3 ascii numbers centered around 500 ± 255.
VOLTage:CURVEL4?	512 samples of wave L4. Each sample 3 ascii numbers centered around 500 ± 255.
VOLTage:CURVEL5?	512 samples of wave L5. Each sample 3 ascii numbers centered around 500 ± 255.
VOLTage:CURVEL6?	512 samples of wave L6. Each sample 3 ascii numbers centered around 500 ± 255.
VOLTage:SC1 <R>	Read Voltage Scaling Factor L1: VOLT:SC1? Write voltage scaling factor L1: VOLT:SC1 20.15 or 2.015e1
VOLTage:SC2 <R>	Read Voltage Scaling Factor L2: VOLT:SC2? Write voltage scaling factor L2: VOLT:SC2 20.15 or 2.015e1
VOLTage:SC3 <R>	Read Voltage Scaling Factor L3: VOLT:SC3? Write voltage scaling factor L3: VOLT:SC3 20.15 or 2.015e1
VOLTage:SC4 <R>	Read Voltage Scaling Factor L4: VOLT:SC4? Write voltage scaling factor L4: VOLT:SC4 20.15 or 2.015e1
VOLTage:SC5 <R>	Read Voltage Scaling Factor L5: VOLT:SC5? Write voltage scaling factor L5: VOLT:SC5 20.15 or 2.015 e 1
VOLTage:SC6 <R>	Read Voltage Scaling Factor L6: VOLT:SC6? Write voltage scaling factor L6: VOLT:SC6 20.15 or 2.015e1

5.6 READING CURRENTS, READING AND WRITING CURRENT SCALE FACTOR

Table 5.3 Current Reading Commands

CURRent:RMS?	6x Arms (root mean square), phase 1 value first.
CURRent:FUND?	6x fundamental of current (A1)
CURRent:RECT?	6x Arect (rectified mean of current)
CURRent:MEAN?	6 x Amean (is valid also when AC coupling is used).
CURRent:MAX?	6x maximum current
CURRent:FFTL1?	$\begin{aligned} & \text { Harmonics L1: A1, A2, ..., A40. } \\ & \text { Can be changed by altering FFT_START, FFT_END (max. 88). } \end{aligned}$
CURRent:FFTL2?	Harmonics L2: A1, A2, ..., A40. Can be changed by altering FFT_START, FFT_END (max. 88).
CURRent:FFTL3?	Harmonics L3: A1, A2, ..., A40. Can be changed by altering FFT_START, FFT_END (max. 88).
CURRent:FFTL4?	Harmonics L4: A1, A2, ..., A40. Can be changed by altering FFT_START, FFT_END (max. 88).
CURRent:FFTL5?	Harmonics L5: A1, A2, ..., A40. Can be changed by altering FFT_START, FFT_END (max. 88).
CURRent:FFTL6?	Harmonics L6: A1, A2, ..., A40. Can be changed by altering FFT_START, FFT_END (max. 88).
CURRent:THD1?	6 x THD1 $=\left(\mathrm{Arms}^{2}-\mathrm{A} 1^{2}\right)^{1 / 2} /$ Arms. Use if for frequency inverter.
CURRent:THD2?	6 x THD2 $=\Sigma\left(\mathrm{An}^{2}\right)^{1 / 2} /$ Arms, $\mathrm{n}=2,3, \ldots, 40$.
CURRent:CREST?	6x current crest factor
CURRent:FORM?	6x current form factor
CURRent:CURVEL1?	512 samples of wave L1. Each sample 3 ascii numbers centered around 500 ± 255.
CURRent:CURVEL2?	512 samples of wave L2. Each sample 3 ascii numbers centered around 500 ± 255.
CURRent:CURVEL3?	512 samples of wave L3. Each sample 3 ascii numbers centered around 500 ± 255.
CURRent:CURVEL4?	512 samples of wave L4. Each sample 3 ascii numbers centered around 500 ± 255.
CURRent:CURVEL5?	512 samples of wave L5. Each sample 3 ascii numbers centered around 500 ± 255.
CURRent:CURVEL6?	512 samples of wave L6. Each sample 3 ascii numbers centered around 500 ± 255.
CURRent:SC1 <R>	Read current scaling factor L1: CURR:SC1? Write current scaling factor L1: CURR:SC1 2000.0 or 2.0 e 3
CURRent:SC2 <R>	Read current scaling factor L2: CURR:SC2? Write current scaling factor L2: CURR:SC2 2000.0 or 2.0 e 3
CURRent:SC3 <R>	Read current scaling factor L3: CURR:SC3? Write current scaling factor L3: CURR:SC3 2000.0 or 2.0 e 3
CURRent:SC4 <R>	Read current scaling factor L4: CURR:SC4? Write current scaling factor L4: CURR:SC4 2000.0 or 2.0 e 3
CURRent:SC5 <R>	Read current scaling factor L5: CURR:SC5? Write current scaling factor L5: CURR:SC5 2000.0 or 2.0 e 3
CURRent:SC6 <R>	Read current scaling factor L6: CURR:SC6? Write current scaling factor L6: CURR:SC6 2000.0 or 2.0 e 3

5.7 READING POWER, APPARENT POWER, AND REACTIVE POWER

Table 5.4 Power Reading Commands

POWer:ACTive?	6x W (active power)
POWer:APParent?	6x VA (apparent power)
POWer:REActive?	6x Var (reactive power)
POWer:FFTL1?	Power Harmonics L1: W1, W2, ..., W21. Can be changed by altering FFT_START, FFT_END (max. 21)
POWer:FFTL2?	Power Harmonics L2: W1, W2, ..., W21. Can be changed by altering FFT_START, FFT_END (max. 21)
POWer:FFTL3?	Power Harmonics L3: W1, W2, ..., W21. Can be changed by altering FFT_START, FFT_END (max. 21)
POWer:FFTL4?	Power Harmonics L4: W1, W2, ..., W21. Can be changed by altering FFT_START, FFT_END (max. 21)
POWer:FFTL5?	Power Harmonics L5: W1, W2, ..., W21. Can be changed by altering FFT_START, FFT_END (max. 21)
POWer:FFTL6?	Power Harmonics L6: W1, W2, ..., W21. Can be changed by altering FFT_START, FFT_END (max. 21)
POWer:FACTor?	6x Power factor W/VA
POWer:ACT1?	6x fundamental Power W1 (Harmonic 1)
POWer:APP1?	6x fundamental apparent power VA1 (Harmonic 1)
POWer:REA1?	6x fundamental reactive power Var1 (Harmonic 1)
POWer:FAC1?	6x power factor of fundamental (Harmonic 1)
POWer:DIST?	6x Apparent power of distortion = V1(A2² + ... + A402) ${ }^{1 / 2}$

5.8 READING ENERGY, CHARGE, AND TIME

Table 5.5 Energy Reading Commands

ENergy:ACTive?	$6 x$ active energy Wh
ENergy:APParent?	$6 x$ apparent energy VAh
ENergy:REActive?	$6 x$ reactive energy Varh
ENergy:CHArge?	$6 x$ charge in Ah $=$ JArect x dt
ENergy:TIME?	$6 x$ elapsed time since RESET in hours
ENergy:RESET	Resets all energy values including Ah and Time

5.9 Reading frequency, impedance, and phase angle.

Table 5.6 Frequency, Impedance, Phase Angle Reading Commands

FREQency?	6x frequency of current or voltage (fundamental)
IMPedance:MAG?	6x magnitude of impedance = V1/A1 (fundamental)
IMPedance:ANGle?	6x phase angle of fundamental impedance
IMPedance:FFT_ANGL1?	Phase angle L1: phi1, phi2, ..., phi21
IMPedance:FFT_ANGL2?	Phase angle L2: phi1, phi2, ..., phi21
IMPedance:FFT_ANGL3?	Phase angle L3: phi1, phi2, .., phi21
IMPedance:FFT_ANGL4?	Phase angle L4: phi1, phi2, .., phi21
IMPedance:FFT_ANGL5?	Phase angle L5: phi1, phi2, .., phi21
IMPedance:FFT_ANGL6?	Phase angle L6: phi1, phi2, ..., phi21

5.10 READING AND WRITING RANGE OF HARMONICS, NUMBER PHASES FOR OUTPUT, and cycle for Logging

Table 5.7 Format Reading Commands

FORMat:FFT_START <N>	Read FFT_START 1-88. Write FFT_START 1-88.	18. Set harmonic to 18 .
FORM	Read FFT END 1-88. Write FFT^{-}END 1-88.	FORM:FFT_END? FORM: FFT^{-}END 50. Set harmonic to 50 .
FORMat:PH_START <N>	Read PH START 1-6. Write PH_START 1-6.	FORM:PH START? FORM:PH_START 5. Set phase start to 5.
FORMat:PH_END <N>	Write PH ${ }^{-}$END 1-6.	FORM:PH END? FORM:PH_END 3 . Set phase end to 3 .
FORMat:CYCLE <N>	Read CYCLE (for logging). Write CYCLE (for logging).	FORM:CYCLE?, integer max. 32000. FORM:CYCLE 32000. Set cycle to max.

5.11 ReAD AND WRITE DISPLAY, RS232 BAUD RATE, IEEE-488 ADDRESS

Table 5.8 Display, Interface, Analog Scaling Commands

DISplay:PAGE <N> *	Read active display page 1-4. DISP:PAGE? Write display page 1-4. \quad DISP:PAGE 4. Display shows values of page 4
DISplay:BATCH *	Example to change the display values of page 1, line 1, 2, 3, 4 DISP:BATCH A00A03A06A14. Arms, Vrms, Pact, Wh. (Table 3.1 and 3.2)
DISplay:AN_SC1	Read analog1 scaling factor: DIS:AN_SC1? Write analog1 scaling factor: DIS:AN_SC1 2.0
DISplay:AN_SC2	Read analog2 scaling factor: DIS:AN_SC2? Write analog2 scaling factor: DIS:AN_SC2 10.0
DISplay:AN_SC3	Read analog3 scaling factor: DIS:AN_SC3? Write analog3 scaling factor: DIS:AN_SC3 5.1
DISplay:AN_SC4	Read analog4 scaling factor: DIS:AN_SC4? Write analog4 scaling factor: DIS:AN_SC4 201.0
DISplay:AN_SC5	Read analog5 scaling factor: DIS:AN_SC5? Write analog5 scaling factor: DIS:AN_SC5 0.85
DISplay:AN_SC6	Read analog6 scaling factor: DIS:AN_SC6? Write analog6 scaling factor: DIS:AN_SC6 1.0
DISplay:RPM_SC1	Read rpm1 scaling factor: DIS:RPM_SC1? Write rpm1 scaling factor: DIS:RPM_SC1 2.0
DISplay:RPM_SC2	Read rpm2 scaling factor: DIS:RPM_SC2? Write rpm2 scaling factor: DIS:RPM_SC2 8.0
RS232 <N> *	Read BAUD-ID. RS232? \rightarrow Output: 4, 0, 0. First Integer = Baud-ID Write BAUD-ID. RS232 5. Baud-ID = 0,1, ... 7=9.6/19.2/38.4/56.6/115.2/230.4/460.8/921.6k Baud
GPIB <N> *	Read GPIB ADDRESS: Write GPIB ADDRESS:\quadGPIB? address 1-30. GPIB 20, writes address 20.
DISplay:UPDATE	Write update command to send all changes to the display
$*$	

5.12 READ AND WRITE COMMON CONTROL COMMANDS.

Table 5.9 Control Commands

VERsion?	Read type of instrument, Software, number phase
ACQuire:INPUT	Read current input id: ACQ:INPUT? 1A=3,5A=0,30A=1, Shunt=2. Set current input 30A: ACQ:INPUT 1x, $x=1,2, \ldots, 6=p h a s e . ~ x=9=a l l$ phase
ACQuire:AUTO_V	Read V-auto: ACQ:AUTO_V? $1 / 0=$ auto on/off Set auto on/off: ACQ:AUTO_V $1 x, x=1,2, . ., 6=$ phase, $x=9=$ all phase
ACQuire:AUTO_A	Read A-auto: ACQ:AUTO_A? $1 / 0=$ auto on/off Set A-auto on/off: ACQ:AUTO_V $1 x, x=1,2, . ., 6=$ phase, $x=9=$ all phase
ACQuire:RANGE_V	Read V-range: \quad ACQ:RANGE_V? $0,1, \ldots, 7=0.3,1,3,10,30,100,300,1000 \mathrm{~V}$ Set 300 V range: \quad ACQ:RANGE_V $6 x, 6=300 \mathrm{~V}, \mathrm{x}=1, \ldots, 6=$ phase, $x=9=a l l$ phase
ACQuire:RANGE_A	Read A-range: ACQ:RANGE_A? 1A/5A $=0,1, \ldots, 6.30 A / S h=0,1,2,3,4$ IN5A/50mA range ACQ:RANGE_A $1 x ; x=1,2, \ldots, 6=$ phase, $x=9=$ all phase
ACQuire:SYNChro	Read Sync: ACQ:SYNC? $0 / 1 / 2=$ current/voltage/external Set Sync: ACQ:SYNC $0 x, x=1,2, . ., 6=$ phase, $x=9=$ all phase
ACQuire:APERture	Read averaging time: ACQ:APER?. $0,1,2,3,4=0.5 \mathrm{~s}, 1 \mathrm{~s}, 2 \mathrm{~s}, 8 \mathrm{~s}, 32 \mathrm{~s}$ Set averaging time: ACQ:APER $1 . \quad 5$ = Fast (100ms)

ACQuire:QU_V	Read V-under, -ok, -over: ACQ:QU_V? 0, 1, 2=ok, over-, underange.
ACQuire:QU_A	Read A-under, -ok, -over: ACQ:QU_A? = 0, 1, 2=ok, over-, underrange.
ACQuire:DC_AC	Read coupling of input amplifiers: ACQ:DC_AC? $0=D C, 1=A C$ Set coupling of input amplifiers: ACQ:DC_AC 1. Set AC coupling.
ACQuire:MODE	Read measure mode: ACQ:MODE? 0,1,2,3=stand, $1=$ Log, $2=$ Trans, $3=$ psp Set measure mode: ACQ:MODE 0 . Set standard measure mode
ACQuire:TRANS_ID	Read duration transient: ACQ:TRANS_ID? 0, 1, 2, 3, 4, 5, 6=duration in Set duration: sec. $0.25,0.5,1,2,4,8,16$ ACQ:TRANS_ID 2. $2=1 \mathrm{sec}$.
ACQuire:AVG_FFT	Read fft-averaging: ACQ:AVG_FFT? 0,1,2,3,4 = Every fft-point is an Set fft-averaging: average of 4, 16, 64, 256, 1024 samples.
ACQuire:SUPRESS	Read suppress: ACQ:SUPRESS? 0=suppress off, 1=on Set suppress: ACQ:SUPRESS 1. Suppress on.
ACQuire:HOLD	Set display run: ACQ:HOLD 0 . Set display hold: ACQ:HOLD 1. Set display locked: ACQ:HOLD 2; (2:must be used for PC operation) (ACQ:HOLD 2 grays 108A display buttons, avoids conflicts) Turn display off: ACQ:HOLD 4; ACS10 Turn display on: ACQ:HOLD 5; ACS10
ACQuire:GO	ACQ:GO starts measurement if in Logging, transient or power-speed. Has no effect in standard measure mode.
ACQuire:HALT	ACQ:HALT stops measurement if in Logging, transient or power speed. Has no effect in standard measure mode.
ACQuire:SETTING	ACQ:SETTING? Output is previously loaded setting number $0,1,2, \ldots$ ACQ:SETTING 12 Loads setting number 12 if present in memory.
ACQuire:NR_POLE1	Read number motor poles, motor1 ACQ:NR_POLE1? 2, 4, 6, 8, 10, $12 \ldots$ Set number of motor1 poles to 12: ACQ:NR_POLE1 12.
ACQuire:NR_POLE2	Read number motor2 poles, motor2 ACQ:NR_POLE2? 2, 4, 6, 8, 10, $12 \ldots$ Set number of motor2 poles to 12: ACQ:NR_POLE2 6.
ACQuire:ZOOM	Set expand sector/back ACQ:ZOOM 0, 1, 2, 3/4 TRANSIENT MEASURE MODE ONLY

Important: Rules for using ACQuire:MODE $x, x=0,1,2,3$.
$x=0=$ standard measure mode
$x=1$ = logging measure mode
$x=2$ = transient measure mode
$x=3$ = power-speed measure mode

- From standard measure mode you can switch to any other measure mode. After sending the command wait 1 second.
- If you are operating in any other measure mode $(1,2,3)$ you must first send ACQ:MODE 0 to return first to standard measure mode, wait 1 second, and send the next command to enter the desired measure mode, and wait 1 second to continue.

6. Computer Operating Software

6.1 Installing Computer Operating Software

Insert the CD-ROM in to the drive for installation.

```
3 Automatische Wiedergabe ㅁ 回 8
```

DVD-RW-Laufwerk (E:) Disc

Immer für Software und Spiele durchführen:
Programm installieren oder ausführen
3etup.exe ausführen
Kein Herausgeber angegeben
Allgemeine Optionen
Ordner öffnen, um Dateien anzuzeigen
mit Windows-Explorer
Standard in der Systemsteuerung festlegen
Click setup.exe for installation.

Click "NEXT" if directory location is correct.

Click "NEXT >>" to start the installation

6.2 108A Data Window (Computer Software)

The Power Analyzer Computer Operating Software consists basically of 3 Windows: The Data Window, the IEC Data Window and the Control/Setting Window.
The Data Window displays the measured values, and the actual ranges of current and voltage. A reserved field is for displaying voltage- and current wave forms (Curve), FFT numeric values and FFT Bar chart. The Data Window lets you select the current inputs, the synchronization, the ranges for current and voltages, the averaging time, the measure mode and the values to be displayed.
The IEC Data Window displays numeric values and charts in context with IEC 555-2 (EN 61000-3-2) standards.
The Control/Setting Window let you select the scaling factors for current, voltage, and analog inputs, Harmonic range, Cycles, FFT- and Transient ID, Suppress and instrument setting numbers.

108A Front Panel

6.2.1 SELECT Interface

Move interface slider to RS232/USB or GPIB or IP/Port.

1. RS232/USB >> select Baud Rate and set Addr (COM)
2. GPIB \gg set Addr
3. IP/Port \gg set IP Address and Port No.
4. press button

Stop Button press Stop to terminate the communication.

6.2.2 Select instrument mode

Turn knob to Standard Mode, Logging Mode, Transient Mode or Power Speed Mode.

Press APPLY

STANDARD MODE

In the Standard Measure Mode 280 quantities per phase are continuously measured (no gaps) and are updated. Values can be displayed on four display pages, can be saved in internal memory, or can be transferred via Interface to a computer.

LOGGING MODE

The basic operation is as follows: Select the number of cycles for which you desire a periodic data output to the RS232 / USB-interface. If you perform measurements on the 50 Hz power line and you select cycles = 1 you obtain new data every 20 ms ; if you select cycles $=30000$ you obtain new data every 10 minutes.

TRANSIENT MODE

The transient measure mode can be used in two ways: You can catch current-, voltage-, and power wave forms in a start-up on all phases simultaneously or you can view all wave forms at a critical operating point in Standard Measure Mode. (up to maximum 6 phases).

POWER-SPEED MODE

This measure mode analyzes the performance of electric devices such as electric cars.

6.2.3 Select software mode

Move function slider to Standard, Curve, FFT Num, FFT Bar, IEC or Vector.

1. Standard
2. Standard + Curve
3. Standard + FFT Num
4. Standard + FFT Bar
5. IEC
6. Standard + Vector

Continuous mode

Timer mode

Abort

>> measurement values
\gg measurement values and curves
>> measurement values and harmonics
>> measurement values and bar graphs
>> move to 108A/PC11 IEC Data Tab
>> measurement values and vector graphs
Continuous measurement (and data storage)

Measurement after 1s, 2s,, 60s (and data storage)

Abort the timer at the next time interval elapsed.

6.2.4 Operate the computer software

	Phase L1		Phase L2		Phase L3		Phase L4		Phase L5		Phase L6	
Line Selector	ISync	5A	1 I ync	5A	ISync	5A	ISync	SHUNT	ISync	SHUNT	ISync	SHUNT
123445678	300V	500 mA	300 V	500 mA	300 V	500 mA	300 V	60 mV	300 V	60 mV	300 V	60 mV
Functions	AUTO OFF											
\% Irms	1.1199m		1.1756 m		720.42u		589.78m		1.2461		275.19m	
: Vrms	317.13m		233.63m		270.09m		240.25m		279.79m		317.84m	
\leqslant Pactive	-13.591u		-26.585u		-26.178u		41.701 m		219.27m		42.237 m	
* Papparent	355.16u		274.67u		194.58u		141.69m		348.67 m		87.469m	
- Ifundamental	271.86m		335.41 m		262.52m		1.0892		1.0003		781.59m	
$5 \sqrt{\text { Vfundamental }}$	21.373		27.017		20.298		19.080		22.673		16.338	
- Pactive1	2.1878		4.6385		1.6031		7.0405		-4.4930		5.3136	
\leqslant Frequency	5.8471		5.4956		3.7381		5.9894		21.717		12.996	

Functions Select a measurement value.
Irms/Ifundamental/Irectified/Imean/Imaximum/Ithd1/Ithd2/Icrest factor/Iform factor Vrms/Vfundamental/Vrectified/Vmean/Vminimum/Vmaximum/V peak-to-peak/Vthd1/Vthd2 Vcrest factor/Vform factor
Pactive/Pappearent/Preactive/Pfactor/Pactive1/Pappearent1/Preactive1/Pfactor1/Pdistortion Eactive/Eappearent/Ereactive/Echarge/Etime/Frequency/Zmagnitude/Zphase
Power Sum/Power Ratio/Motor1/Motor2/Motor1_loss/Motor2_loss/Trafo/Analog in/Line-to-line

6.2.5 InPUT, RANGES, SYNCHRONIZATION, APERTURE SELECTION

Current Input	Current Input:	Select IN 1A / IN 5A / IN 30A or SHUNT
IN 5A		
I AUTO/MAN		
* I AUTO	I AUTO/MAN:	Select mode: I AUTO/MAN = current auto/manual ranging
Range 5A	IN 5A: IN 30A: IN 1A: SHUNT: U AUTO/MAN: Voltage range:	$15 \mathrm{~mA}, 50 \mathrm{~mA}, 150 \mathrm{~mA}, 500 \mathrm{~mA}, 1.5 \mathrm{~A}, 5 \mathrm{~A}, 15 \mathrm{~A}$ 1A, 3A, 10A, 30A, 100A $1.5 \mathrm{~mA}, 5 \mathrm{~mA}, 15 \mathrm{~mA}, 50 \mathrm{~mA}, 150 \mathrm{~mA}, 500 \mathrm{~mA}, 1.5 \mathrm{~A}$ $60 \mathrm{mV}, 200 \mathrm{mV}, 600 \mathrm{mV}, 2 \mathrm{~V}, 6 \mathrm{~V}$ Select mode: U AUTO/MAN = voltage auto/manual ranging $300 \mathrm{mV} / 1 \mathrm{~V} / 3 \mathrm{~V} / 10 \mathrm{~V} / 30 \mathrm{~V} / 100 \mathrm{~V} / 300 \mathrm{~V} / 1000 \mathrm{~V}$
15 mA		
U AUTO/MAN		
U AUTO		
Voltage range		
300 mV		
Sync Source	Sync Source:	$\begin{aligned} & \text { I Sync = current synchronisation (Default); } 2 \mathrm{~Hz}-5 \mathrm{kHz} \\ & \text { U Sync = voltage synchronisation, } 2 \mathrm{~Hz}-150 \mathrm{kHz} \\ & \text { Ext Sync = external synchronisation, } 2 \mathrm{~Hz}-150 \mathrm{kHz} \end{aligned}$
I Sync		
Aperture	Aperture:	$100 \mathrm{~ms} / 500 \mathrm{~ms}$ (default)/ $1 \mathrm{~s} / 2 \mathrm{~s} / 8 \mathrm{~s} / 32 \mathrm{~s}$
1s		Set coupling of input amplifiers: AC or AC+DC coupling
AC+DC	AC+DC:	
Refresh	Refresh:	Press Refresh button to execute settings.

6.2.6 Phase Slider for selecting individual settings Per phase

Individual selection for voltage ranges, current inputs, current ranges and synchronization for every phase is possible. Move the Phase Slider along the top of the software to L1, L2, ..., L6 or L1-L6, and press the eries button to send the settings to the instrument.

6.2.7 Curve

Curve:
Select desired waveform chart. Curve L1, L2,, L6 of current, voltage and power.

6.2.8 FFT Numerics (Harmonics)

Harmonics:

Save Harmonics:

Select a FFT measurement value. FFT Volt L1-L6 / FFT Current L1-L6 FFT Power L1-L6 / FFT Angle L1-L6.

Press button to store harmonics in a file.

6.2.9 FFT BAR GRAPH (HARMONICs)

Waveform Graph:
Select a FFT Bar Graph. FFT Volt L1-L6 / FFT Current L1-L6 FFT Power L1-L6 / FFT Angle L1-L6

6.2.10 Vector Graph (Phase Angle)

Display vector graphs from phase L1-L3 or L4-L6 using Phase Selection function.

Visible Section function allows sectional- or full graphs.

6.2.11 IEC Data Window

The IEC Window displays numeric values and charts in context with IEC 555-2 (EN 61000-3-2) standards.

Class File Selector
Class A:
Class B:
Class C:
Class D:

Classification of Equipment into Classes A, B, C, D for Harmonic Measurement.
Balanced three-phase equipment and all other equipment except that stated in one of the following classes.
Portable tools.
Lighting equipment including dimming devices.
Equipment having an input current with a "special waveshape" and an active power P up to 600 W .

Limits for Class A: (max. permissible harmonic current [A]) $1.08 / 2.30 / 0.43 / 1.14 / 0.30 / 0.77 / 0.23 / 0.40 / 0.184 / 0.33 / 0.153 / 0.21 / 0.131 / 0.15 /$ 0.115 / $0.132 / 0.102 / 0.118 / 0.092 / 0.107 / 0.084 / 0.098 / 0.077 / 0.09 / 0.071 / 0.083 /$ 0.066 / 0.077 / 0.061 / 0.0720 .057 / 0.068 / 0.054 / 0.064 / 0.051 / 0.061 / 0.048 / 0.058 / 0.046

Limits for Class B: (max. permissible harmonic current [A]) $1.62 / 3.45 / 0.645 / 1.71 / 0.45 / 1.155 / 0.345 / 0.600 / 0.276 / 0.495 / 0.230 / 0.315 / 0.197 /$ $0.225 / 0.1730 .199 / 0.153 / 0.178 / 0.138 / 0.161 / 0.125 / 0.148 / 0.115 / 0.135 / 0.106 /$ $0.125 / 0.099 / 0.116 / 0.0920 .109 / 0.086 / 0.102 / 0.081 / 0.096 / 0.077 / 0.091 / 0.073 /$ 0.087 / 0.069

Limits for Class C: (max. value expressed as a \% of the fundamental input current of luminaires)
1.62 / 3.45 / $0.645 / 1.71 / 0.45 / 1.155 / 0.345 / 0.600 / 0.276 / 0.495 / 0.230 / 0.315 / 0.197 /$
$0.225 / 0.1730 .199 / 0.153 / 0.178 / 0.138 / 0.161 / 0.125 / 0.148 / 0.115 / 0.135 / 0.106 /$
0.125 / 0.099 / $0.116 / 0.0920 .109 / 0.086 / 0.102 / 0.081 / 0.096 / 0.077 / 0.091 / 0.073 /$ $0.087 / 0.069 / 0.118 / 0.092 / 0.107 / 0.0840 .098 / 0.077 / 0.09 / 0.071 / 0.083 / 0.066 / 0.077$ / 0.061 / 0.072 / 0.057 / $0.068 / 0.054$ / 0.064 / $0.0510 .061 / 0.048$ / 0.058 / 0.046

Limits for Class D: (max. permissible harmonic current [A])
$1.08 / 2.30 / 0.43 / 1.14 / 0.30 / 0.77 / 0.23 / 0.40 / 0.184 / 0.33 / 0.153 / 0.21 / 0.131 / 0.15 /$ $0.115 / 0.132 / 0.102 / 0.118 / 0.092 / 0.107 / 0.084 / 0.098 / 0.077 / 0.09 / 0.071 / 0.083 /$
$0.066 / 0.077 / 0.061 / 0.072 / 0.057 / 0.068 / 0.054 / 0.064 / 0.051 / 0.061 / 0.048 / 0.058 /$ 0.046

Offset (\%)
\div FFT Curr L1 $*$ FFT Curr L2 $\quad \sqrt[4]{\text { FFT Curr L3 }}$

Reset Harmonics

Stop

Modify offset for limits in \%.

Select FFT Current L1 ... L6.

Press button to reset the measurements.

Press STOP to terminate the communication.

6.2.12 Control / Setting Window

Scale Current (I)

Scale Voltage (V)

Scale Analog/Rpm

Cycles [32000]

Select desired phase for scaling: Current L1-L6
Multiplication factor for current. This is especially useful when using external voltage sensors.
Valid Range: -3.38e-38/+3.37e38 (default Value: 1.0)
NOTE: Be careful when changing scaling factors as it could look like an instrument malfunction in case of improper choice.

Select desired phase for scaling: Voltage L 1- L6
Multiplication factor for voltage. This is especially useful when using external voltage sensors.
Valid Range: -3.38e-38/+3.37e38 (default Value: 1.0)
Note: Be careful when changing scaling factors as it could look like an instrument malfunction in case of improper choice.

Select desired analog input, rpm for scaling: Analog 1-6/Rpm 1-2
Multiplication factor for analog/rpm. This is especially useful when using external voltage sensors.
Valid Range: -3.38e-38/+3.37e38 (default: 1.0).
Note: Be careful when changing scaling factors as it could look like an instrument malfunction in case of improper choice.

For Logging Measure Mode set 1 to 32000. Defines the measurement duration per measurement set.
If you perform measurements on the 50 Hz power line and you select cycles $=1$ you obtain new data every 20 ms ;
if you select cycles $=30000$ you obtain new data every 10 minutes.

FFT ID Set to $0,1,2,3,4$. Corresponds to FFT averaging over 4, 16, 64, 256 , or 1024 cycles.

Transient ID

Suppress ON/OFF
 FFT/Phase Start/End

Refresh

Display Backlight

Load Setting

Calibrate

Set it to 1, 2, 3, 4, 5, 6 or 7 . The transient ID determines the measurement duration after start.
Transient ID Measurement duration: $1=0.25$ seconds
$2=0.5$ seconds (default)
$3=1$ second
$4=2$ seconds
$5=4$ seconds
$6=8$ seconds
$7=16$ seconds

If on, small values of Arms, Vrms, and Watt are set to zero.
Select FFT START/END or Phase START/END.
Start/Stop index of the data to be queried.
Valid Range: 1 ... 88 (default: 1)
Press Refresh button to execute settings.
The display backlight can be switched ON or OFF for energy savings. (Option must be installed)

Loads selected setting number in memory. Press 'Load Setting' button to execute settings.

Move slider 'Calibrate' to start the calibration procedure.

6.2.13 Logging-, Transient-, Power Speed Measure Mode

Logging Mode Window

Select the number of cycles and set the frequency; then press APPLY.

Now set the number of Logging iterations and press the START button.

After the last iteration is completed, the amplitudes of the signals are displayed in the graph window. Press EXIT to leave Logging Mode.

Transient Mode Window

Power Speed Mode Window

Select Transient ID then press APPLY.

Press the START button to scan signals.

Use Zoom A ... Zoom D selector and press button next to selector.

Press EXIT to leave Transient Mode.

Press the START button.
Press HALT to stop data acquisition.

Amplitudes of the signals are displayed in the graph window.

Press EXIT to leave Power Speed Mode.

7. Analog Input and -Output

The rear panel DB37 connector Figure 7.1 provides all signals for processing inputs to- and processing outputs from the Power Analyzer.

Figure 7.1: Process Input-Output Connector DB37

Symbol	Description
I1-I4	Analog inputs -5 V to +5 V , if not used short to AGRD
I5-I6	Analog inputs -10 V to +10 V, if not used short to AGRD
Freq1	TTL frequency range 5 Hz to 150 kHz
Freq2	TTL frequency range 20Hz to 150 kHz
AGRD	Ground for input signals (analog and TTL)
$01-012$	Output of displayed values, $\pm 5 \mathrm{~V}$ max
$+12 \mathrm{~V} /$ GRD/-12V	Supply for external current sensor unit (300mA)
SYNC1-SYNC6	Synchronization inputs or outputs for external synchronization
SHAPE IN	$0-80 V$ input to form a TTL signal
SHAPE OUT	Sharper TTL output, can be applied to Sync1-Sync6
SGRD	Ground for Sync1-Sync6 inputs.
START	Provides hardware start by connecting to 5V/pin18. (Log- ging/Transient/Power-Speed)

7.1 Analog Input And Output Specification

Analog input 1-4, span:

Analog input 5,6, span:

Frequency input 1,2:
Analog output 1-12:
Update interval:
Output quantities:
-5 V to $+5 \mathrm{~V}, \mathrm{Ri}=100 \mathrm{k} \Omega$, Typical max error 0.2% If not used short inputs to AGRD
-10 V to $+10 \mathrm{~V}, \mathrm{Ri}=100 \mathrm{k} \Omega$, Typical max error 0.2%
If not used short inputs to AGRD
20 Hz - 150kHz, Typical max error 0.2 \%
-5 V to +5 V , Rout $=1 \mathrm{k} \Omega$, Typical max error 0.2%
0.5 sec

Arms, Vrms, W, VA, Var, PF1, -5 V to +5 V . Frequency, Wh as relative output: $0.3125 \mathrm{~V}-5 \mathrm{~V}$. When output reaches 5 V it drops to $5 \mathrm{~V} / 16$ and so forth (increasing values). When output falls below 0.3125 V it increases to 0.3125×16 (decreasing values).

7.2 Programming The Analog Outputs

In standard measure mode all analog inputs, Freq1, and Freq2 are measured in 500ms time intervals. All analog outputs are set according to the criteria described below.
In power-speed measure mode freq1 is measured in 20 ms time intervals. At Start analog output1 is set to +5 V and can be used to start the system under test (power-speed only). In logging- and transient measure mode the analog option is not used.

In standard measure mode the displayed quantities on display page 1 are applied to the analog outputs. The output configuration depends on the number of phases installed in the Power Analyzer.

The analog outputs for power and reactive power can be scaled using An6 scaling factor (in SETUP).

Example: At 100 W power range (10V/1A/PF = 1) the full scale analog output is 5 V with An6 scale factor $=1$.

At low power factor, e.g. $\mathrm{PF}=0.02$ the analog output voltages are $5 \mathrm{~V} \times 0.02=100 \mathrm{mV}$.
Setting An6 to 20.0 the analog outputs for power become 2 V resulting in increased resolution at small power factor variations.

Below examples of output configurations are given:

Single phase:	Display lines 1 to 8 = Arms, Vrms, W, VA, Var, PF1, frequency, Wh. Analog output 1, 2, 3, 4, 5, 6, 7, 8 are proportional to Arms, Vrms, W, VA, Var, PF1, freq, Wh. Analog outputs 9, 10, 11, 12 are zero.
Two phase:	Display lines 1 to 6 are Arms, Vrms, W, PF1, VA, Wh.
	Analog output 1,2 = Arms of phase 1 and phase 2
	Analog output 3, $4=\quad$ Vrms of phase 1 and phase 2
	Analog output 5, $6=\quad \mathrm{W}$ of phase 1 and phase 2
	Analog output 7, 8 = PF1 of phase 1 and phase 2
	Analog output 9,10 = VA of phase 1 and phase 2
	Analog output 11, $12=\quad$ Wh of phase 1 and phase 2
Three phase:	Display lines 1 to $4=W$, VA, Arms, PF1
	Analog output 1, 2, $3=\quad$ W phase 1, 2, 3
	Analog output 4, 5, $6=\quad$ VA phase 1, 2, 3
	Analog output 7, 8, $9=\quad$ Arms phase 1, 2, 3
	Analog output 10, 11, $12=\quad$ PF1 phase 1, 2, 3
Four phase:	Display lines 1 to 3 = Arms, W, VA
	Analog output 1, 2, 3, $4=$ Arms phase 1, 2, 3, 4
	Analog output 5, 6, 7, $8=\quad$ W phase 1, 2, 3, 4
	Analog Output 9, 10, 11, $12=\quad$ VA phase 1, 2, 3, 4
Five phase:	Display lines 1 to 3 = Arms, W, VA
	Analog output 1, 2, 3, 4, $5=\quad$ Arms phase 1, 2, 3, 4, 5
	Analog output 6, 7, 8, 9, $10=W$ phase 1, 2, 3, 4, 5
	Analog output 11, $12 \quad$ VA phase 1 and phase 2
Six phase:	Display lines 1 and $2=$ Arms, W
	Analog output 1, 2, 3, 4, 5, $6=$ Arms phase 1, 2, 3, 4, 5, 6
	Analog output 7, 8, 9, 10, 11, $12=\mathrm{W}$ phase 1, 2, 3, 4, 5, 6

7.3 Using Inputs for Motor Testing (See also 4.1 Motor Testing)

Using a 6 phase Power Analyzer two motors can be tested simultaneously. Motor1 is connected to phase 1, 2, and 3. Motor2 is connected to phase 4, 5, and 6. Speed of motor1 is measured via TTL FREQ1 input, and Speed of motor2 is measured via TTL FREQ2 input. Both inputs exhibit excellent accuracy over a wide frequency range 20 Hz to 150 kHz . A rotating disc with 180 divisions at 150 kHz will display 50000 rpm (rotations per minute). FREQ1 and FREQ2 can be scaled via interface commands to accommodate different speed sensor. External torque transducers can be connected to one of the six analog inputs. All inputs can be scaled in the SETUP window or using the interface to display actual torque.

Power-Speed measurements are limited to phase 1, 2, and 3 and Freq1 speed input.

7.4 Using Low Current Shunt for Standby Power Measurement

- Insert Shunt in the 3-pin connector on rear panel
- Select SHUNT input

Shunt voltage 60 mV corresponds to current range $0-100 \mu \mathrm{~A}$ Shunt voltage 180mV corresponds to Shunt voltage 600 mV corresponds to Shunt voltage 1.8 V corresponds to Shunt voltage 6V corresponds to
current range $0-300 \mu \mathrm{~A}$
current range 0-1mA
current range $0-3 \mathrm{~mA}$
current range 0-10mA

- Scale current by 0.0001
- Red socket $=$ Current High, Black socket $=$ Current Low
- Observe the correct wiring. The Current of the voltage path must not flow via shunt

8. Data Management

8.1 Operating the Power Analyzer using the USB Interface

To operate the USB interface you must install the USB driver. Use the following driver (on the CD-ROM) for your Windows operating system:

CDM v2.12.14 WHQL Certified for Windows (Windows XP to Windows 10 (32/64)).

```
\ Gerate-Manager
Datei Aktion Ansicht ?
```



```
B- RONY-PC
    #0. Anschlüsse (COM & LPT)
        Communications Port (COM1)
        ECP Printer Port (LPT1)
        F NPort Communication Port1 (COMS)
        TM USB Serial Port (COM4)
    #4 Audio%Video- und Gamecontroller
    ##.%)
    (-) Computer
    (-)
    (T) Hiskettenlaufwerke
    #D DVD/CD-ROM-Laufwerke
    #T.0
    ##G Grafikkarte
    (4)-C.C.IDE ATA/ATAPI-Controller
    (4) Laufwerke
    (4) Mäuse und andere Zeigegeräte
    (1)-[) Mobile Gerate
    [1 Monitore
    (4) 2. Netzwerkadapter
    # Prozessoren
    #- Speichercontroller
    (1) Systemgerate
    +-- Tastaturen
    (#) Tragbare Geräte
    AT-USB-Controller
```

Open the hardware manager and check for proper USB Driver installation. Use COM4 to run 108A Computer Software.

8.2 Operating the Power Analyzer using the Ethernet Interface

To operate the Ethernet interface you must consult the attached documentation "COMMUNICATION SETUP 108A ETHERNET" (also stored on a CD).

```
~2)}\mathrm{ Geräte-Manager
Datei Aktion Ansicht
```



```
日 畮 RONY-PC
        Anschlüsse (COM & LPT)
        Communications Port (COM
        MP ECP Printer Port (LPT1)
        T}\mathrm{ NPort Communication Port 1 (COM5)
        USB Serial Port (COM4)
    4 Audio-, Video- und Gamecontroller
    (1) .ᅧᄋ Bildverarbeitungsgeräte
    C Computer
```



```
    # Diskettenlaufwerke
    DDV/CD-ROM-Laufwerke
    #1.0}\mathrm{ Eingabegeräte (Human Interface Devices)
    (1) Grafikkarte
    (4)-CIDE IDE ATA/ATAPI-Controller
    (1) Laufwerke
    #- Mäuse und andere Zeigegeräte
    4- Mobile Geräte
    # Monitore
    (#) Netzwerkadapter
    - Prozessoren
    - Speichercontroller
    (1) Systemgeräte
    - Trabare G
    TH Tragbare Geräte
    USB-Controller
```

Open the hardware manager and check for proper Ethernet installation. Use COM5 to run 108A Computer Software.

8.3 Measurement Data from the Power Analyzer (USB) to Computer

If USB memory stick is inserted, measurement data are also stored on memory stick 108A_data_01, 108A_data_02, ..., 108A_data_20.

Ordner

The 108A stores measurement data in Standard Mode, on HOLD and in Power Speed Mode.

- Standard Mode data files are named: 108A_data_01, 108A_data_02,, 108A_data_20.
- Standard Mode on HOLD data file is named: 108A_data_HOLD.
- Power Speed Mode data file is named: 108A_psp.

Launch MS Excel and select file from USB stick for conversion to MS Excel format.

9. Calibration via 108A Front Panel

A calibration cycle of two years is appropriate. If occasional overloads occur (greater two times maximum value) we recommend one year calibration cycle.

9.1 Equipment Needed

Voltage: $0.3 \mathrm{~V}, 1 \mathrm{~V}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V}$; 60 Hz
Current: $\quad 1.5 \mathrm{~mA}, 5 \mathrm{~mA}, 15 \mathrm{~mA}, 50 \mathrm{~mA}, 150 \mathrm{~mA}, 500 \mathrm{~mA}, 1.5 \mathrm{~A}$; 1A, 3A, 10A, 20A; 60Hz

9.2. Calibration Procedure

- Set all voltage- and current scaling factors to 1.0000 .
- Select Standard Measure Mode, select 1 second averaging
- Touch SETUP. In the pop-up window touch Calibrate 108A. Enter your calibration code 7123.
- Touch one of the buttons Voltage Calibration or Current Calibration.

You will exit to the Standard Measure Mode. The bottom line of the display, will display the button TAKE VOLTAGE READING or TAKE CURRENT READING depending on what you selected in the setup menu.
Now proceed with section 9.2.1 Voltage Calibration at 60 Hz or section 9.2.2 Current calibration at 60 Hz .

9.2.1 Voltage Calibration At 60 Hz

You must select Sync V. Touch button TAKE VOLTAGE READING when values have stabilized. Apply voltage to all phases simultaneously.

Select 0.3 V range, apply 0.3 V , wait \rightarrow touch TAKE VOLTAGE READING
Select 1V range, apply 1V, wait \rightarrow touch TAKE VOLTAGE READING
Select 3 V range, apply 3 V , wait \rightarrow touch TAKE VOLTAGE READING
Select 10 V range, apply 10V, wait \rightarrow touch TAKE VOLTAGE READING
Select 30V range, apply 30V, wait \rightarrow touch TAKE VOLTAGE READING
Select 100 V range, apply 100V, wait \rightarrow touch TAKE VOLTAGE READING
Select 300V range, apply 300V, wait \rightarrow touch TAKE VOLTAGE READING
Select 1000 V range, apply 1000 V , wait \rightarrow touch TAKE VOLTAGE READING
If only voltage calibration was needed continue with Section 9.2.3 "Storing the Calibration Constants".

9.2.2 Current Calibration At 60Hz, Shunt Input Calibration

You must select Sync A.
a.) Select Current Input IN 5A.

Apply current to all current inputs in series.
Select 15 mA range, apply 15 mA , wait \rightarrow touch TAKE CURRENT READING
Select 50 mA range, apply 50 mA , wait \rightarrow touch TAKE CURRENT READING
Select 150 mA range, apply 150 mA , wait \rightarrow touch TAKE CURRENT READING
Select 500 mA range, apply 500 mA , wait \rightarrow touch TAKE CURRENT READING
Select 1.5 A range, apply 1.5 A , wait \rightarrow touch TAKE CURRENT READING
b.) Select current input IN 1A , use 1A input 3 pole connector.

Select 150 mA range, apply 150 mA wait \rightarrow touch TAKE CURRENT READING
Select 500 mA range, apply 500 mA wait \rightarrow touch TAKE CURRENT READING
Select 1.5A range, apply 1.0A, wait \rightarrow touch TAKE CURRENT READING
c.) Select current input \mathbb{N} 30A, remove 1A input 3 pole connector and insert short circuit cover.

Select 1A range, apply 1A, wait \rightarrow touch TAKE CURRENT READING
Select 3A range, apply 3A, wait \rightarrow touch TAKE CURRENT READING
Select 10A range, apply 10A wait \rightarrow touch TAKE CURRENT READING
Select 30A range, apply 20A, wait \rightarrow touch TAKE CURRENT READING
Select 100A range, apply 20A, wait \rightarrow touch TAKE CURRENT READING
d.) Shunt input calibration at 60 Hz

Remove the short circuit cover on the shunt input.

Select shunt input SHUNT.
Apply voltage to all shunt inputs in parallel.

Select 60 mV range, apply 60 mV , wait \rightarrow touch TAKE CURRENT READING
Select 200 mV range, apply 180 mV , wait \rightarrow touch TAKE CURRENT READING
Select 600 mV range, apply 600 mV , wait \rightarrow touch TAKE CURRENT READING
Select $2 \mathrm{~V} \quad$ range, apply 1.8 V , wait \rightarrow touch TAKE CURRENT READING
Select 6V range, apply 6V, wait \rightarrow touch TAKE CURRENT READING

9.2.3 Storing The Calibration Constants

At end of calibration the calibration constants are saved in nonvolatile memory.

- Enter the SETUP menu, touch Store Constants / Exit Calibration.

This stores all calibration constants in nonvolatile memory.
In case you do not want to store the calibration constants press the button Esc. The instrument returns to the Standard Measure Mode.

- Wait at least 2 seconds. After calibration the Power Analyzer must be turned off and restarted for normal use.

9.3. A Few Practical Hints

- It is acceptable to calibrate a single voltage range.
- It is acceptable to calibrate a single current range on the 30A input.
- It is acceptable to calibrate a single shunt input range.
- In case one of the ranges of the 5A input, or one of the ranges of the 1 A input is out of tolerance all calibration steps of 9.2.2 a and b. must be performed.

After calibration of a single range the Power Analyzer must be switched off and on again.

9.4. 108A Calibration using Windows Operating Software (LabView)

9.4.1 Equipment Needed

Voltage: $\quad 0.3 \mathrm{~V}, 1 \mathrm{~V}, 3 \mathrm{~V}, 10 \mathrm{~V}, 30 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}, 1000 \mathrm{~V} ; 60 \mathrm{~Hz}$
Current: $\quad 1.5 \mathrm{~mA}, 5 \mathrm{~mA}, 15 \mathrm{~mA}, 50 \mathrm{~mA}, 150 \mathrm{~mA}, 500 \mathrm{~mA}, 1.5 \mathrm{~A}$; 1A, 3A, 10A, 20A; 60Hz

9.4.2 Calibration Procedure

- Set all voltage- and current scaling factors to $\mathbf{1 . 0 0 0 0}$.
- Select Standard Measure Mode, select 1 second averaging
- Launch 108A Windows Operating Software (NI LabVIEW)
- \quad Select Tab 108A/PC11 Control Setting Window
- Switch slider Calibrate to ON
- Select Tab 108A/PC11 Data Window

9.4.3 Voltage Calibration At 60Hz

Select Voltage Calibration and press Apply

Select Take Reading, DO NOT PRESS APPLY now!

Calibration Mode Activated

Proceed...

Apply voltage to all phases simultaneously.

Current Input	Select U MAN, U Sync, 300mV and press Refresh Apply 300 mV from calibrator - wait - press Apply
IN 5A	
I Auto/Man	
* I MAN	Select 1V and press Refresh Apply 1 V from calibrator - wait - press Apply
Range 5A	
15 mA -	Select 3V and press Refresh Apply 3 V from calibrator - wait - press Apply
UAuto/Man	
* U MAN	
Voltage range	Select 10V and press Refresh Apply 10V from calibrator - wait - press Apply
300 mV	
Sync Source	Select 30V and press Refresh Apply 30V from calibrator - wait - press Apply
$\stackrel{*}{ }$ U Sync	
Aperture	
1s	Select 1000V and press Refresh Apply 1000 V from calibrator - wait - press Apply
AC+DC	
Refresh	

9.4.4 Current Calibration At 60 Hz (IN 5A)

Select Current Calibration and press Apply

Select Take Reading, DO NOT PRESS APPLY now!

Apply current to all current inputs in series (IN 5A).

Current Input	
$\sqrt[4]{ }$ IN 5A	Select IN 5A, I MAN, 15mA, I SYNC and press Refresh
I Auto/Man	Apply 15 mA from calibrator - wait - press Apply
: I MAN	Select 50mA and press Refresh
Range 5A	Apply 50mA from calibrator - wait - press Apply
15 mA -	
U Auto/Man	Select 150 mA and press Refresh
- U MAN	Apply 150mA from calibrator - wait - press Apply
Voltage range	
300mV	Select 500mA and press Refresh
Sync Source	Apply 500 mA from calibrator - wait - press Ap
- I Sync	Select 1.5A and press Refresh
Aperture	Apply 1.5A from calibrator - wait - press Apply
- 1s	
$\cdots \quad \mathrm{AC}+\mathrm{DC}$	
Refresh	

9.4.5 Current Calibration At 60Hz (IN 1A)

Apply current to all current inputs in series using the 3 pole connector.

Current Input	
- IN 1A	Select IN 1A, 150mA and press Refresh
I Auto/Man	Apply 15
I MAN	Select 500mA and press Refresh
Range 1A	Apply 500mA from calibrator - wait - press Apply
150 mA -	
U Auto/Man	Select 1.5A and press Refresh
U MAN	Apply 1.0A from calibrator - wait - press Apply
Voltage range	
4300 mV	
Sync Source	
I Sync	
Aperture	
* 1s	
* AC+DC	
Refresh	

9.4.6 Current Calibration At 60Hz (IN 30A)

Remove 1A input 3 pole connector and insert short circuit cover. Apply current to all current inputs in series

Current Input	
\% IN 30A	Select IN 30A, 1A and press Refresh
IAuto/Man	Apply 1A from calibrator - wait - press Apply
- I MAN	
Range 30A	Select 3A and press Refresh
1A	Apply 3A from calibrator - wait - press Apply
OAuto/Man	
* U MAN	Select 10A and press Refresh
Voltage range	Apply 10A from calibrator - wait - press Apply
* 300 mV	
Symc Source	Select 30A and press Refresh
\pm I Sync	Apply 20A from calibrator - wait - press Apply
Aperture	
\% 1s	Select 100A and press Refresh
\% AC+DC	Apply 20A from calibrator - wait - press Apply
Refresh	

9.4.7 Current Calibration At 60Hz (SHUNT)

Remove the short circuit cover on the shunt input. Apply voltage to all shunt inputs in parallel.
Shunt input Lo

Current Input	
$\stackrel{3}{4}$ SHUNT	Select SHUNT, 60mV and press Refresh
I Auto/Man	Apply 60mV from calibrator - wait - press Apply
* I MAN	Select 200mV and press Refresh
Range SHUNT	Apply 180mV from calibrator - wait - press Apply
U Auto/Man U U MAN	Select 600mV and press Refresh
Voltage range	Apply 600mV from calibrator - wait - press Apply
$\pm 300 \mathrm{mV}$	Select 2V and press Refresh
Sync Source \% I Sync	Apply 1.8V from calibrator - wait - press Apply
Aperture	Select 6V and press Refresh
\% 1s	Apply 6V from calibrator - wait - press Apply
AC+DC	
Refresh	

9.4.8 Storing The Calibration Constants

Select Store/Exit Calibration and press Apply

This stores all calibration constants in nonvolatile memory. In case you do not want to store the calibration constants (abort calibration process), the instrument uses the previous stored calibration constants.

Wait at least 2 seconds. After calibration the Power Analyzer must be turned off and restarted for normal use.

9.4.9 A Few Practical Hints

- It is acceptable to calibrate a single voltage range.
- It is acceptable to calibrate a single current range on the 30A input.
- It is acceptable to calibrate a single shunt input range.
- In case one of the ranges of the 5 A input, or one of the ranges of the 1 A input is out of tolerance all calibration steps of 9.2.2 a. and b. must be performed.

After calibration of a single range the Power Analyzer must be switched off and on again.

10. AmENDMENT

10.1 Electric Motor Testing Using Infratek 108A-6 High Precision Power AnAlyZer

The 108A-6 equipped with Option 03, (6 analog inputs, 2 digital inputs, and 12 outputs) performs all required measurements for motor testing.

Use the Infratek operating Software to perform motor tests in STANDARD measure mode. Values at different motor operating points can be stored and viewed when done.

108A Computer Software

The 108A scalable analog inputs can be used for torque-, temperature- and vibration measurements. Two scalable TTL-inputs are for speed- or torque measurement. An external synchronization input per phase from an encoder can be used to synchronize measurements to the pole position.

The 108A-6 measures two motors simultaneously: input power, output power, torque, slip, speed, and efficiency of every motor, as well as harmonics of current, voltage, power, impedance, and phase angle. For none sinusoidal signals (trapezoidal wave-forms or frequency inverters), we recommend to use the fundamental of impedance and fundamental of phase. From these values the motor inductances L, L_{d}, L_{q} and the motor resistances $R=R_{m}+R_{d c}$ can be determined.

The motor DC-resistance is obtained by applying a DC-current: $R_{d c}=P_{d c} / I^{2}{ }_{d c} . R_{m}$ is a magnetization dependent loss.

Standard	L1 5A As	12 5A As	13 5A As 300 V 500m	L4 5A As	PAGE 1	
Arms	553.70 m	552.81 m	552.	553.80m	IN 5A	
Vrms	212.23	214.29	212.85	210.45	500 mA	
Watt	14.337	18.5	16.860	15.563	300 V	
M1 M 2 [M3			000.00m	0.0000	Sync A	
M4]M51M6	000	000.00m	999.6	0.0000	1s	
[Z01]		256.69	245.08	249.63	WAVE	
Phi01	-75.140	$\begin{array}{r} -79.689 \\ 1.3667 \end{array}$	$\begin{array}{r} -68.895 \\ 1.3668 \end{array}$	$\begin{array}{r} -72.537 \\ 0.0000 \end{array}$	Standard	
A1\|A2	A3	1.3664				
HOLD	AC + DC	L3-16	FFT Table	Reset Wh	SETUP	

The 108A display and the computer software screen can be configured to the user's needs.

| M1\| M2| M3| | $=$Input power, output power,
 torque |
| :--- | :--- |
| M4\| M5| M6| | $=$ Slip, rpm, efficiency |
| Phi01 | $=$ Phase angle of fundamental |
| A1\| A2| A3| | $=$ Analog inputs 1, 2, 3 |

108A Display Screen

10.2 Efficiency Measurement of an Inverter driven Induction Motor in Steady State

Overall Efficiency $=4 \pi^{*}$ rotation per second*torque/(nr_poles) $)^{*}(\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3)$

First, run a no load motor test. The interface command "COMP:MOT1_Loss?" stores the motor loss. For tests on loaded motor this loss is subtracted to compute motor output power. With the command "COMP:MOTOR1?" all motor values: input power, output power, torque, slip, speed (rpm), and efficiency are sent to the PC.

The external torque- and temperature inputs are transferred to the PC by the command "COMP:ANIN?". Run tests at different loads to obtain graphs of slip versus torque, input power versus torque, and efficiency versus torque. Remember, the speed- and torque inputs can be scaled to read actual rpm and Nm.

10.3 Circuit Model of an Asynchronous Induction Motor

Perform a no-load test and a blocked-rotor test. The circuit elements can be determined.

No-load test

Measure the fundamental of voltage, current, impedance and phase angle. Calculate Go and Bo.

Blocked-rotor test:

Measure the fundamental of voltage, current, impedance, and phase angle. From a DC measurement obtain the ohmic resistance Rdc. Approximate $\mathrm{R}=0.5 \mathrm{Rdc}$. Calculate R1 and X from fundamental of impedance and phase.

Once the elements of the equivalent circuit are determined various motor characteristics can be plotted, such as: torque / power / power-factor versus slip.

10.4 Measurements on loaded Motor

Operate the motor at various load points. Store the measurements using the PC Operating Software, alternatively store the measurements on the Power Analyzer in Excel. Plots like torque versus slip, input power versus slip, and many more graphs can be obtained.

Torque and power versus slip. Motor is star connected. It is operated by 50 Hz power line.

Power Factor, efficiency, and phase current versus slip.

10.5 Measurement of Start-up Behaviors of Inverter Driven Induction Motor

Select LOGGING Mode

Select voltage- and current ranges such that at start-up no range overload occurs. Select cur-rent- or external synchronization to all installed phases on the 108A, set "CYCLE" to 1, 2, 3, or any other value. Apply the synchronization to all phases installed in the Power Analyzer. Finally start the system.

If you selected DYCLE $=1$ the 108A sends every period one data set per phase to the PC. A 6 -phase instrument sends 6 data sets to the PC, phase 1 first. Each data set contains: Frequency, A, V, W, PF, VA, Wh, and VAh. A 6-phase 108A transmits 6 data sets per 20ms (maximum speed). Stop the measurement when the system is in steady state and analyze the data using EXCEL.

10.6 Simultaneous Measurement of 2 Synchronous Motors (PMSM, BLDC)

A wide range of synchronous motors are on the market (PMSM, IPMSM, BLDC). The power consumption ranges from mW to 500 kW . Many different constructions are in use. They all have in common that the magnetic field rotation (2 phase or 3 phase) is electronically generated. A wide range of speeds (rpm) are available.

10.7 Advantage of the 108A Power Analyzer

For medium size-, small-, and very small motors the 108A provides per phase 3 direct current inputs: $1 \mathrm{~mA}-2 \mathrm{~A}$, (for small motors) $15 \mathrm{~mA}-7 \mathrm{~A}$, and 1 A to 40 A (for medium size motors). For very large motors high precision (0.004%) broad band current sensors up to 700A are available.

The sensor output is simply connected to the $1 \mathrm{~mA}-2 \mathrm{~A}$ input on the 108A. To display actual currents, scaling per phase is available. Also, analog inputs and speed inputs can be scaled. The 108A measure all motor parameters, current, voltage, power, and their harmonics, impedance, and phase angles simultaneously. This is important because electronically generated waves include harmonics (BLDC) and noise (PMSM).

10.8 Circuit Model of a Synchronous Motor

Synchroneous Motor Circuit Model of one phase

Phasor representation neglecting Rs.

Normally, in a synchronous motor R_{s} is much smaller than X_{s}.

10.9 FROM A BLOCKED ROTOR TEST

Rs + Xs can be determined (Rs and Xs are somewhat current dependent). Measure impedance and phase angle $\theta: Z=R s+j 2 \pi f$ Ls. From this simple model the electromotive force E and power angle δ can be calculated.

Maximum torque developed by a PMSM-, IPMSM, or BLDC-motor depends very much on its construction. The torque is a function of power angle δ. Their main advantages are low loss and the ability to run at very high speeds (IPMSM).
(There is no need to go through the trouble to perform the mathematics of Clark Transformation followed by the Park Transformation to get to the d, q-coordinates. It remains the proof that $L s=1 / 3 \sqrt{ } L^{2}+L q^{2}$. For PMSM Ld = Lq, high speed motors IPMSM Ld < Lq).

PMSM = Permanent magnet synchronous motor
IPMSM = Interior permanent magnet synchronous motor
BLDC = Brushless DC electric motor

10.10 Determination of synchronous inductances Ld and LQ of IPMSM and PMSM

The equivalent phase model of PMSM and IPMSM are shown below (PSPM = permanent magnet synchronous motors). R represents the sum of ohmic losses (Rohm) plus magnetic losses (Rm). Ld and Lq are the equivalent inductances along the d-axis (direct axis) and the q-axis (quadrature axis).

d-axis circuit

q-axis circuit

The ohmic losses are temperature dependent $R_{\mathrm{ohm}}=R_{\mathrm{o}}(1+\alpha \Delta t)$, the magnetic losses are magnetization dependent due to non-linearity.

Ld and Lq are measured in a locked motor shaft test. This implies $\omega \mathrm{el}=0$, or the voltage sources of the equivalent circuits are zero.
Lq, and mainly Ld are somewhat current dependent.

10.11 MEASURE D-AXIS INDUCTANCE LD

Alignment into d-axis

Step 1: Align the rotor to phase a. Connect DCsupply as shown. The current Id aligns the rotor into the d-axis, electrical angle $=0^{\circ}$.

Step 2: Lock the rotor shaft.
Step 3: Replace the DC-supply by a variable frequency AC-Source. Apply current Id.

Step 4: From the 108A display read frequency f, |Z01|, Phi01, (use current synchronization).

Step 5: Calculate: $\mathrm{R}=0.667 \cdot|\mathrm{Z} 01| \cos (\mathrm{Phi01})$ Xd $=0.667 \cdot|Z 01| \sin (P h i 01)$ Ld = Xd / 2mf

10.12 Measure Q-Axis inductance LQ

Alignment into q-axis

Step 1: Current Iq aligns the rotor into the q-axis, electrical angle $=90^{\circ}$.

Step 2: Lock the rotor shaft firmly, Iq generates torque.

Step 3: Replace the DC-Supply by a variable frequency AC-Source. Apply current Iq.

Step 4: From the 108A display read frequency, |Z01|, Phi01, (use current synchronization).

Step 5: Calculate: $\mathrm{R}=0.5|\mathrm{Z} 01| \cos (\mathrm{Phi01})$ $X q=0.5|Z 01| \sin (P h i 01)$ $L q=X q / 2 \pi f$

Step 6: Repeat step 5 at different current levels. Plot Lq versus current.

10.13 Measure Ohmic component of Loss Resistance R = Rohm + Rm

Step 1: Connect DC power supply.
Step 2: Measure Vdc, Idc, and Pdc using 108A.

Step 3: Calculate Rohm $=\mathrm{Pdc} / \mathrm{I}^{2} \mathrm{dc}$

10.14 BACK - EMF (BEMF)

To measure the BEMF the shaft of a PMSM / IPMSM is turned by an auxiliary motor at constant speed $\omega_{\text {el }}$.

Step 1: Connect Va, Vb, Vc to phase 1, 2, 3 of the 108A. (use voltage synchronization).

Step 2: Display V01a, V01b, V01c the fundamental of voltage and frequency.

Step 3: Calculate the BEMF peak value.

Vapeak $=1.41 \cdot$ V01a
Vbpeak $=1.41 \cdot$ V01b
Vcpeak $=1.41 \cdot$ V01c
Calculate k= Vpeak / 2ाff [Vs / rad]. k is a constant used for motor control.

10.15 Transient Performance of Synchronous Motors

The 108A also measures motors in transient state (start-up, speed change, load change) using the Logging measure mode or the Power-Speed measure mode.

Logging Mode

${ }_{\text {Legaing }}^{\text {Legi: }}$		${ }_{10}^{12} 5 \mathrm{AA}$ Vs	${ }^{13} 5$ S ${ }^{\text {V/ }}$	$\sqrt{\text { Average }}$ Sum		At end of programmed time interval ($1,2,3, \ldots$ periods), frequency, A, V, PF, VA, Wh, and VAh of each phase are transmitted to the PC. Data are stored. In EXCEL graphs can be generated.
Freq	50.438	50.441	50.438		IN 5A	
Arms	30.753	30.807	30.760		AUTO A	
Vrms	234.30	234.29	234.38		AUTO V	
Watt	7.2036k	7.2156k	7.2060k		Sync V	
PF	999.70m	999.69m	999.46m		1s	
va	7.2058k	7.2178 k	7.2099k		WAVE	
Wh	30.984	31.036	30.994			
vah	30.993	31.045	31.011			
					STOP	

Power Speed Mode

Use it for high speed IPMSM with fast changing signal frequency. In 20 ms intervals averaged current and voltage, 3-phase power, 3phase apparent power, and speed (rpm) are sent to PC. In EXCEL graphs like power versus rpm can be drawn. Plots on the 108A display are drawn.

Transient wave

At operating points of interest the simultaneous wave forms of all 6 phases can be viewed (current, voltage and power). To view details sectors of wave forms A, B, C, or D can be expanded.
electronic products

Weingartenstrasse 6

8707 Uetikon am See / Switzerland

phone:	+41449205005
fax:	+41449206034
email:	
	info@infratek-ag.com

Copyright 2016 Vers. 4.0 / 160420 by Infratek AG

